Computer Programming

An-Najah N. University
Computer Engineering Department
Luai Malhis, Ph.D,

The C Language Basic

C Language Elements

Key Words - reserved words with special
purpose that are part of the C/C++ language

Programmer Defined Symbols - words or names
that have been defined by the programmer.
May be variables, or constants.

Operators - Tell the computer to perform specific
operations (ex: +,-, .. > &&).
Punctuation - begins or ends a statement (;)

Syntax - grammar rules for writing a C
statement.

Luai M. Malhis 2

Some Definitions

e Statement - instruction for the computer to
perform, usually ends in a semicolon (;).

* Variable - name given to a memory location
that stores data that may change

* Constant - data that does not change

Luai M. Malhis

Programming Errors

Syntax errors: violation of the syntax (grammar rules)
of the programming language

The compiler gives an error message if the
program contains a syntax error

Run-time errors: errors detected when the program is
run

The system usually gives an error message during
execution for run-time error

Logic errors: program compiles and runs normally, but
does not perform properly. Caused by an error in the
logic of the program

Luai M. Malhis 4

Special Characters

Character Name Use
// double slash to indicate a comment,
everything to right is ignored.
[* */ slash asterisk to enclose a comment
pound sign to indicate preprocessor directive
<> brackets to enclose a file name for a

preprocessor directive

() parentheses to enclose parameters for a
function or change precedence

{ } braces to enclose a group of statements

“ A quotes to enclose a string of characters

’ semicolon to end a statement

Comments

Important part of the program.
Non-executable (not compiled) statements

Describe the purpose of the program or parts of
the program

Can be indicated by the double slash or the
slash asterisk combination

— // everything to the right of the double slash until
the end of the line is ignored

— /* encloses comment and requires a closing */ to
end comment.

Provide documentation

Programming Process

e Define the problem (most important step).
— Purpose
— Input
— Processing
— QOutput
e Design an algorithm (often in pseudo code(English))
 Check logic
 Write code, enter code, compile code
e Correct any syntax errors
 Run code with test data, correct any errors

Example

e Suppose you want to calculate the area of a circle using the
radius that a user enters.
 Define Problem

— purpose: the program is to calculate the area of a circle for a given
radius

— input: radius
— process: area = 1/2 pi radius?
— output: area

eAlgorithm -
— Display a message asking for radius // cout << “enter radius”;
— Input the radius // cin >> radius;
— Calculate the area= 0.57r? // area = 0.5 *3.14 raduis*raduis

— Display the radius and the area // cout << “the area is “<< area;

 Check Logic - does this algorithm fulfill the purpose.
 Write code, enter the code, and compile it.

Variables and Constants

Data can be stored in RAM (Random Access
Memory) to be used as needed.

Variables and symbolic constants are names
for these memory locations.

Variables refer to memory locations in which
the value stored may change throughout the
execution of the program.

Constants refer to memory locations in which
the values do not change.

Use a declaration to set aside memory space.

ldentifiers (Variables)

|dentifiers are names (or symbols) used by the programmer to
refer to items such as variables, constants, functions.

|dentifiers should be descriptive of what they stand for

The “Name” used for identifiers must follow specific guidelines
for C++ to be valid.

|dentifier Naming Rules:
The identifier cannot be a keyword, e.g. int, float, if, while, etc.

The identifier must be comprised of only letters (A-Z, a-z),
numbers(0-9), the underscore (_) and the S

The first character must not be a digit
C/C++ is case sensitive so total is not the same identifier as Total

Valid and Invalid Names

X:is valid name

Xy2:is valid name

1class: is invalid because it starts with digit
Num two: is invalid because it contains space
For: is valid

for: is invalid because it is a keyword

X%y: is invalid because it contains %

Total Score: is valid

area: is valid name

_Info2for: valid

@num: invalid

w o=

Data Types

To allocate the memory space for a variable

you must state the type of data that is being
stored as well as the identifier.

The classification of data types:
Integers (whole numbers),
Real numbers (with fractional parts)

Characters (ASCIl code) may be letters,
numbers or any other symbol.

Key words for Data Types

e |n C/C++ There are 6 basic keywords used to define variables
of the different data types

Integers: Example (decleration)
e short - integer (size 2 bytes) // short x;

e int- integer (size 4 bytes) // inty2;

* long - integer (size 4 bytes) // long abc;

Floating Points:

e float - floating point value: ie a number with a fractional part.
(size 4 bytes) //float area;

e double - a double-precision floating point value. // double w;
Symbols(letters):
e char - asingle character. (size 1 byte) // char z;

————— In this class, we will mainly use char, int and double when
declaring variables.

= W

Declarations

Declarations are statements that tell the
computer to allocate memory space and the
identifier will be used to refer to that space.

All variables must be declared before they
can be used!

Variable declarations have the format
data type Name(identifier);
int someNumber;
double radius;
char let;

Assignment Statement

The assignment statement is used to store values
in memory locations

The general syntax is

Where expression may be simple or complex
expression (equation).

The expression evaluated then the result is
stored at the identifier.

Later will discuss expressions in more details

Assignment statement (2)

The assignment statement can be used to initialize
variables. Examples are:

int num1 =15; // initialize to constant value
int num2 = num1; // initialize to variable
char char = ‘A’; // initialize to character

Note the use of quotations with charters to
differentiate it from variables

double sum = 13.2; // initialize double values
int x=13.2; // store only 13

int z="‘A": // converts char to int stores 65 in z.
double f=12; //stores12.0into f

Input Statement
Allows data entered by the keyboard to be stored in

variables.
The general syntax is

Examples are:

int abc; cin >> abc; where an integer value read from the

keyboard and stored in memory location abc.

Can enter multiple values in one statement.
cin>>length>>width;

cin skips all white spaces blanks, newlines, and tabs.

example cin >> x>>y; skips all spaces between x and .

cin requires the use of the pre-processor directive
#tinclude <iostream.h> as first line in the file

Output Statement
e Used to display text and data to the screen.
e The general syntax is

e Examples are:

e cout<<5;// display constant value

e cout << “Hello World”; // display text

e int num =5; cout << num; // display variable num

e intval; cin >>val; cout << val+2; // evaluate expression and
display result on the screen.

e cout<< “the areais “<<5 *2; // text + value;
e cout << “the house” << endl << “is full”; prints
the house
is full
Use endl to start printing on the next line.

Expression Definition

An expression in C/C++ is a C statement that may contain
constants, variables and operators.

An expression is two types simple and complex

Simple expression is either constant value such as integer 12,
doublel3.4 or character ‘A’ or a value of a variable such int
x=5; the value of x.

Complex expression contains simple expressions and
operator to be applied on it or them. Examples: 5+7,

x*2+7/2, X*2>Y. Complex expression are build from other simple or
complex expressions.

Every expression must have a value: if the expression is
constant it value is the value of the constant (12, 13.5. ‘A’). If
variable the value stored in the variable (int x =12, value 12).
Complex evaluate expression to compute value (x + 2).

Expression Types and Values

Expression may contain many simple, complex expressions and
many operators applied on these expression that results in a single
value.

An expression can be either of two types: Arithmetic or Logical

Arithmetic expression applies an arithmetic operator to an operands
(expressions) (+,-,*,%, ... more later)

Logical expression applies logical operator to an operands
(expressions) (>, < ,&& | |, more later)

The Final value of an expression is either logical or arithmetic
depending on last operator executed. If the last operator is logical
the expression final value is either “true” 1 or “False” 0. If the last
operator is arithmetic the expression final value is a arithmetic
(integer or double)

For any expression if the arithmetic value is zero its logically “false”
otherwise it is logically “true”.

Expression Evaluation

means the integer or floating-point constants
and/or variables in the expression.
There are two kinds of numeric values
Integers (0, 12, -17, 142)
Floating-point numbers (3.14, -6.023e23)

are things like addition, subtraction
multiplication, greater than and less.

The value of an expression will depend on the data and
and on the used

Additionally, the value assigned to a variable in an

assignment statement will also depend on the of

the variable.

Arithemtic Operators

Operators can be combined into complex expressions

result = total + count / max - offset;
Operators have a well-defined precedence which determines the
order in which they are evaluated
Precedence rules

— Parenthesis are done first

— Division, multiplication and modulus are done second

» Left to right if same precedence (this is called associativity)
— Addition and subtraction are done last

e Left to right if same precedence

Operator types:
operates on two operands : 6.5 * num
operates on one operand: -23.4

Sample Expressions

*Operators on doubles:
unary: - and binary: +, -, *, and/
Constants of type double: 0.0, 3.14, -2.1, 5.0,
Sample expressions:
— 0.4 * income - children * 500
— (A4.0/3.0) *3.14 * radius * radius * radius
*Operators on integers:

unary: - and binary: +, -, *, /and %
Constants of type integers: 0, 1, -17, 42

Sample expressions:
—5+4%*2
—Int x =10; x/2

int Division and Remainder
Integer operators include

(/) and
%,
/ is integer division: no remainder, no rounding
299 /100 2
6/4 1
5/6 0

% is mod or remainder:
299 % 100 99
6% 4 2
5%6 5

A Cautionary Example

int radius;

double volume;

double pi =3.141596;

volume =(4/3) * pi * radius *radius * radius;

Resultis (1) * pi * radius *radius * radius;
result is 3.141596 * radius *radius * radius

val= (3/4)* radius

resultis 0 * radius = 0.0 * radius

Order of Evaluation

determines the order of evaluation
of operators.

s equal to
And does it matter?

Try this:

(4+3)*(2-1)=7
4+(3%2)-1=9

Operator Precedence Rules

Precedence rules:

—1. do | s first, starting with innermost

—2. then do unary minus (negation):

—3. then do “multiplicative” ops:

—4. lastly do “additive” ops: binary

Operator(s) Operation(s) Order of evaluation (precedence)

O Parentheses Evaluated first. If the parentheses are nested, the
expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same level”
(i.e., not nested), they are evaluated left to right.

*/,0r% Multiplication Division |Evaluated second. If there are several, they re

Modulus evaluated left to right.
+ or - Addition Evaluated last. If there are several, they are

Subtraction

evaluated left to right.

Associativity Matters

determines the order among
consecutive operators of equal precedence

*Does it matter? Try this:

*Most C arithmetic operators are
within the same precedence level

Depicting Expressions
assume a=-1.0; b=2.5; and c = 15.2 then

Data Conversions

Sometimes it is convenient to convert data from one type to
another

— For example, we may want to treat an integer as a floating point value
during a computation

Conversions must be handled carefully to avoid losing
information

Two types of conversions

— Widening conversions are generally safe because they tend to go from
a small data type to a larger one (such as a short to an Int)

— Narrowing conversions can lose information because they tend to go
from a large data type to a smaller one (such as an Int to a short)

Luai M. Malhis 30

Data Conversions

e |n CH#, data conversions can occur in three ways:

— Assignment conversion

e occurs automatically when a value of one type is assigned to
a variable of another

e only widening conversions can happen via assignment
 Example: aFloatVar = anIntVar

— Arithmetic promotion

 happens automatically when operators in expressions
convert their operands

e Example: aFloatVar / anIntVar
— Casting

Data Conversions: Casting

Casting is the most powerful, and dangerous, technique
for conversion

Both widening and narrowing conversions can be
accomplished by explicitly casting a value

To cast, the type is put in parentheses in front of the value
being converted

For example, if total and count are integers, but we

want a floating point result when dividing them, we can
cast total:

result = (float) total / count;

Conversions in Assignments

implicit conversion
to double

int total, count, value;
double avg;

total=97; count=10;
avg = total / count ;

value = total*2.2;

implicit conversion
to int — drops
fraction with no
warning

Explicit Conversions

Use a to explicitly convert the result of an
expression to a different type
Format:

This does not change the rules for evaluating the
expression itself (types, etc.)

Good style, because it shows the reader that the
conversion was intentional, not an accident

Using Casts

int total, count ;
double avg;

total=97; count=10;

avg = (double) total / (double) count);

avg = (double) (total / count) ;

Luai M. Malhis

35

Advice on Writing Expressions

*Write in the clearest way possible to help the reader

*Keep it simple; break very complex expressions into
multiple assignment statements

*Use parentheses to indicate your desired precedence
for operators when it is not clear

*Use explicit casts to avoid (hidden) implicit conversions
in mixed mode expressions and assignments

*Be aware of types: Every variable, value, and expression
in C has a type (int, double or char)

Relational Operators

Logical expressions are C statements that when evaluated
result in true or false values. In C true is represented by any
numeric value not equal to 0 and false is represented by 0

Relational Operators

Relation operators allow us to compare two expressions or
variables. Below is a list of these relational operators in
order of precedence.

> |s greater than

< Isless than

= Is greater than or equal to

Is less than or equal to

Is equal to // This is a mathematical equals

| =Is not equal to // An exclamation point means not in C++

>
<

Logical Operators

There are three types of logical operators which can be used to combine Boolean
expressions into compound Boolean expressions.

The operators are: !(not), && (and), || (or)

The following table summarizes these operators|

X |y X && y x || vy 'x

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0
Examples: finalScore > 90 && midtermScore = 70

midtermGrade ="A' || finalGrade = "A'

!(hours = 40)is equivalent to hours <= 40

Luai M. Malhis 38

Short Circuits && and | |

e Short circuit evaluation looks at a compound expression and evaluates it until it
reaches a conflict a final result of the expression

e Along expression filled with ANDs
p && q && r // where p, q, r are boolean expressions

if p is false, then the expression is false and therefore, the evaluation will stop at p,
if pis true q is evaluated and so on. A series of ANDs will stop being evaluated
when a false is reached

A long expression filled with Ors
pllallr //wherep,q,rareboolean expressions

. if p is true, then the expression is true and therefore, the evaluation stop there
if p is false q is evaluated and so on. A series of ORs will stop being evaluated
when a true is reached

Summary: Conditional AND (&&) and Conditional OR (] |)Would not evaluate the
second condition if the result of the first condition would already decide the
final outcome.

0 0 N U R WDNER

Logical and Arithmetic Operator Precedence

Parenthesis () Highest precedence
Unary ! not and — (negative) (cast)
* [, % multiply, divide remainder
+, - plus and minus
>, <, >=, <= |less, greater, less than, greater than
==, I= equal and not equal
&& (AND)
|l (OR)
= (assignment) Lowest precedence

Mixing Expressions

In addition it is possible to include logical and arithmetic
operators in the same expression. The result of evaluating such
expression is logical or arithmetic depending on the final
operator being performed. If the last operator is logical then the
result is either true or false. If the last operator is arithmetic the
final value is arithmetic.

Special care must be taken when evaluating such expressions
with the order of precedence. Example int x =5;y =7, int z;

z = x+3 >vy. In the precedence rules above the > operator is evaluated last
hence result of expression is logical and value stored in z is 1.

z = X +(3 <y). The last operator evaluated is + since 3 <y is zero.

Then z = x+0. This is an arithmetic expression and in 5 is stored in z.

Assignment Revisited

* You can consider assignment as another operator, with a
lower precedence than the arithmetic operators

First the expression on the right hand
side of the = operator is evaluated

answer sum / 4 + MAX * lowest;

Then the result is stored in the
variable on the left hand side

Luai M. Malhis

42

Short Hand Operators

Syntax:
Variable Op.= Expression;
Evaluated as
Variable = Variable Op. (Expression);

Assignment operator Sample expression Explanation

+= c += 7 cC=cCc+ 7/
-= d -=4 d=d-4
*= e *= 5 e =e *>5
= f /= 3 f=Tf/3
%= g %= 2 g=9g%?2

Increment and Decrement Operators

Operator Called Sample expresson [Explanation

++ preincrement |++Q Increment a by 1, then use the new value
of a in the expression in which a resides.

++ postincrement | q++ Use the current value of a in the expression
in which a resides, then increment a by 1.

_ predecrement |——p Decrement b by 1, then use the new value
of b in the expression in which b resides.

_ postdecrement |[p—— Use the current value of b in the expression

in which b resides, then decrement b by 1.

HJg. 4.13The increment and decrement operators.

There is no difference between post and pre increment on the variable itself.

However, the difference in the final value of expression in which pre and post

increment are found.

Post increments the variable afferit is used in evaluating the expression and Pre

Increments the variable before it is used in evaluating the expression

Difference between Pre and Post

Pre and Post increments/decrements with respect to the value of the variable.
Pre

int number = 5; // declares number to be 5

++number; // increments number to 6.

Post

int number =5; //declares number to be 5

number++; //increments number to 6

Pre and post increment/decremented with respect the value of the expression.
Pre

int number =5, b;

b = number++; b=5, number=6
Post

int number =5, b;

b = ++number; b=6, number=6

high

low

>

Precedence and Associativity

Operators Associativity Type

() left to right parentheses
+ —— right to left unary postfix
44+ —— + - (type) right to left unary prefix
* /J U left to right multiplicative
+ - left to right additive

< <= > >= left to right relational

== 1= left to right equality

= += —= *= [= Y= right to left assignment

Luai M. Malhis

46

Math Functions

An expression in C/C++ may need to perform a mathematical functions.
C provides build in functions to perform common operations.

To use these functions we must insert #include <math.h > at the of
program file.

These functions are called by writing functionName (argument); or
functionName(argumentl, argument2, ...);
Examplecout << sqrt(900.0); // would print 30

All functions in math library return a double.
Function arguments can be

— Constants: sqrt(4);

— Variables: sqgrt(x);

— Expressions: sqrt(sqrt(x)); or sqrt(3-6x);

The following table contains the most popular functions:

Method Description Example
ceil(x) rounds x to the smallestinteger |ceil (9.2) 1s10.0
not less than x ceil(-9.8)i8-9.0

cos(0.0)181.0

cos(x) trigonometric cosine of x is
(x in radians)
exp(x) exponential function ex exp(1.0)182.71828
exp(2.0)187.38906
fabs(x) absolute value of x fabs(5.1) 1s5.1
fabs(0.0)is0.0
fabs(-2.76)158.76
floor(x) rounds x to the largestinteger floor(©)18 9.0
not greater than x floor(~9.8)is-10.0
fmod(x, y) |remainderof x/yasa floating- [fmod(13.657, 2.333)is1.992
point number
log(x) natural logarithmof x (base &) |log(2.718282)is1.0
log(7.389056)1s2.0
loglO(x) logarithm of x (base 10) loglO(10.0)i81.0
loglO(100.0)182.0
pow(%X, vy) x raised to power y (xy) pow(2, 7)is128
pow(9, .5)18 3
sin(x) trigonometric sine of x sin(0.0)180
(x in radians)
sqrt(x) square root of x sqrt(900.0)1830.0
sgrt(2.0)183.0
tan(x) trigonometric tangent of x tan(0.0)is0
(x in radians)
Luai M. Malhis

48

