Computer Programming
An-Najah N. University
Computer Engineering Department

Luai Malhis, Ph.D,

The Selection and Iteration Statements

Selection statement (if Statement)

* Gives the ability to choose which set of instructions are
executed according to a condition.

e Choose among alternative courses of action
Syntax :if (condition)
statement;

The if statement allows you to evaluate a condition and only
carry out the statement if the condition is true (not zero).

— Example:

Read student’s grade
If student’s grade is greater than or equal to 60
Print “Passed”
int grade; cin >> grade;
if ( grade >= 60 )
cout << "Passed";

1 /el se Selection

Different action is taken depends on conditions being
true or false

Example:

Read studen’s garde

If student’s grade Is greater than or equal to 60
print “Passed”

else print “Failed”

if (grade >=60)
cout << ""Passed"";
else cout << "Failed"";

Another example:
if (hours <= 40.0) pay = rate * hours;
else pay = rate * (40.0 + (hours - 40.0) * 1.5);

Nested If Statements

There are no restrictions on what the statements in an if statement ca be.
For example an if statement can contain another if statement.
if(x<0)
ifly!=4)
z=y*x
else
zzy/x
else
ifly>4)
Z=y+Xx;
else
zZ=y-X

In the code above first if statement contains another if else construct
and the else statement contains another if else construct. Please note
if no braces are used always the else statement matches the closest if.




More Examples

If Statements are Independent of each other
int day; cin >> day;
if (day == 1)
cout << "Sunday";
if (day == 2)
cout << "Monday";

if (day == 7)
cout << "Saturday";

In the code above all the if statement must be evaluated.
However, the cout statement is executed for only one of
them depending on the value of day entered. This wastes
computation time.

if ...elseif.... else construct

intaay;,  cin>>day
If(day == 1)
cout << "Sunaay’;
else if (aay ==2)
cout << "Monaay ;
else if (aay == 7)
cout << "Saturday”;
else
cout << “Unknown aay’;

The code above is more efficient because when one statement
evaluates to true the rest of statements are skipped.

More examples

e Compute tax based on income

Income % Tax
< 20,000 Notax
>= 20,000 and < 335,000 20%
>= 35 000 and < 50,000 25%
<= 30,000 and < 100,000 0%
2= 100,000 3%
int income;
cin >> income;
if ( income < 20000 )
printf( “No tax.” );
else if (income < 35000 )
cout << “tax = “<< 0.20 * income;
else if (income < 50000 )

cout << “tax = “<< 0.25 * income;
else if (income < 100000 )

cout << “tax =” << 0.30 * income;
else

cout << “tax =” << 0.35 * income;

Compound Statements

— Set of statements within a pair of braces
if ( grade >= 60 )
cout << "Passed.\n";
else {
cout << "Failed.\n";
cout << "You must take this course again.\n";
}
— Without braces,

cout << "You must take this course again.\n";

always executed
Block

— Set of statements within braces { statements }




Common Mistakes

One common mistake can occur when the == (equality)
operator is confused with the = (assighnment) operator.
int n;
cin >> n;
if (n = 3)
cout << "n equals 3";
else
cout << "n doesn't equal 3";
The if statement is always true;

Common Mistakes (2)

The null statement: if (condition);
int num;
cin >> num;
if (num >0);
cout << num;

In this case the value of num will always be
printed on the screen regardless of its value.
The reason is that the “cout << num;”
statements is outside the if selection.

Code Examples
if only // read double prints negative if value is less
than 0
double db;
cin >> db;
if (db <0)
cout << negative;

If ... else //readtwo numbers and print the smallest
intx,y;
cin >>x >>y;
if (x<vy)
cout << x;
else
cout <<y;

Code Examples (2)

if ... elseif.. else construct
// Code to print case of letter:
char ch;
cin >> ch;
if ((ch>=‘a’) && (ch <=Z’))
cout << “Small Letter”;
else if ((ch >="A’) && (ch <= Z"))
cout << “Capital Letter”;

else cout << “none letter”;




The Switch Statement

— Test expression for multiple values

— Series of case labels and optional defaul t case
switch ( expression ) {
// only works if expression evaluates to integer value

case valuel: /I taken if variable == valuel

Examples

Read in day as a number 1,2,3,....,7 and

print it as text Sunday, Monday, Tuesday, ....... , Saturday.
int day;

cin >> day;

statements )
break; Il necessary to exit switch switch (day) {
case 1 : cout << “ Sunday”; break;
case value2: 3 .
case value3: /I taken if variable == value2 or ==value3 case 2 : cout << “ monday”; break;
Statements case 3: cout << “Tuesday”; break;
break;
default: /I taken if variable matches no other cases case 7 : cout << “ Saturday”; break;
statements
break;  // break here not necessary with last option default : cout << “unknown day”;
} }
Examples (2) Missing Breaks
int n;
You can have multiple statements per case cin >> n;

Intx,y;
cin >>x>>vy;
Switch (x<y){
case 1: cout << “xis smaller thany”;
cout << x;
cout <<vy;
cout << “The sum of x and y is “ << x+y;
break;

default : // case 0 makes no difference
cout << “x is greater than or equal to y”;
cout << x +vy;

switch (n) {
case 1: cout << “one ”;
case 2: cout << “two ”;
case 3: cout << “three ”; break;
case 4: cout << “four ”;
default: cout << “good bye”;

}// In the code above if n == 1 then one two three are printed.
If n == 2 two three are printed.

If n ==3 three is printed.
If n ==4 four good bye are printed.




Default location

char gender;
cin >> gender;
switch (gender) {
default: cout << “Uknown gender”; break;
case ‘M’”:
case ‘m’: cout << “Male”; break;
case ‘F’:
case ‘f’: cout << “Female”; break;
}
The example above illustrates that

The default statement does not have to be the last statement in the
cases block. It could be placed anywhere first, last or in between.

the last case may or may not have break;

Multiple case values

char gender;
cin >> gender;
switch (gender) {
default: cout << “Uknown gender”; break;
case ‘M”:
case‘m’: cout << “Male”; break;
case ‘F’:
case ‘f’: cout << “Female”; break;

}

The example above illustrates that if the same set of statement to
be executed for more than a single case value, the case values
are written following each other. Then the statement to be
executed follow that last case. In the example above we print
Male if the input is ether ‘M’ or ‘m’. Print Female if the input is
either ‘f’ or 'F’

Ilterations

Definition: Iteration is a repetition structure in which
a set of statements are repeated while some
condition remains true

— Example
while there are more numbers to read
Read number and perform processing
— whi le loop repeated until condition becomes false
e Example
int product = 2;
while ( product <= 1000 )
product = 2 * product;

Loop Definition

* Loops allow a group of statements to be
executed over and over again.

e All loops must have:
» loop-control variable(s)

»body - block of statements to be executed
repeatedly

»a way for the loop to be terminated.

* Three basic loop mechanisms: while, for, and
do-while.




While Loop

* Has the Syntax;
initial condition;
while (conditional expression)
{ statement(s) // body of loop
}

* The statements comprising the body of the loop
will be executed until the conditional expression
evaluates to false.

e Therefore one of the statements in the body
should modify the loop-control variable(s) so the
loop terminates.

e While loops are pre-test loops, the condition for

While Loop (cont.)

* The while loop may not be executed if initial loop condition
is false.

* The initial condition is optional it sets up the condition
based on which the loop may or may not executed.

Loop types:
(1) Count-controlled repetition
Loop repeated until counter reaches certain value
Number of repetitions known
Example: intn=0;
while (n < 10) {
cout << “hello”;

n++
repetition is tested before the loop is executed. }
While loop continue Examples
(2) Sentinel value:
Loop ends when certain value reached. e Read 10 int number and compute their average:
Example int x;
int radius; cin >> radius; // initial condition int count =0;
while ( radius <=0 { int sum =0;
cout<<“ Zero is not a valid radius! \n” while ( count < 10) {
<<“Please re-enter the radius.\n"; cin >> x;
cin>>radius; sum += X;
} count++;
The loop is only executed if an invalid value is entered. )

An invalid value is radius <=0. Loop is ended when user
enters valid value for radius.

cout << “The average is “ << (double) sum/ count;




Examples (2)

Keep reading int values until their average exceeds 1000
int x; int count =0;
double sum =0; double average = 0;
while (average <= 1000) {
cin >> x;
sum += x;

count++;
average = sum/ count;

}

cout << “The average is “ << average;

Examples (3)

Read characters until ‘#’ is entered. Print the count of small
and capital letters entered.
int countsmall =0; int countcapital =0;
charc; cin>>c;
While (c 1= ‘#') {
If( c>=‘a’ && c <= 7’)
countsmall++;
If( c>="A" && c <= Z’)
countcapital++;
cin >>c;
}
cout << “the count of small is “ << countsmall << end|;
cout << “the count of capital is “ << countcapital;

Common Errors

* Not reaching the termination condition - loop never
ends. Itis an infinite loop.

int x = 1; While ( x > 0) cout << “hello”;
* Missing braces - only first statement is executed as
body of the loop.
int x = 0; while ( x < 10) cout << “hello”; x++;
* A semicolon at the end of while line
while (condition);

No statement is executed - it is an empty loop and an
infinite loop once it starts. Like the null statement in
the If structure.

int x =0; while ( x >0); cout << “hello”; x++;

Do-While Loops

* The do-while loop is a post-test loop.
e The condition is tested after the loop is executed.
* The loop is always executed at least once.
do {
statement(s) // body of loop
} while (condition);

Example:
int x =0;
do{
cout << x;
} while (x 1=0);

This loop prints O before it stops.




Common Use

A common use is printing menu continuously on screen:
int n1, n2, result;
Do {
cout<<"Please enter S to subtract two values” << end|

Another Example

Keep doing area calculations for rectangles while user wishes
void main () {
int length, width; char answer;

<< “enter A to add two values” << endl do{ ; ;
<< “or enter Q to quit”; cout<< “please enter length: ”;
cin> > operation; cin >> length;
switch (operation) { cout << “please enter width:”;
case ‘A’ : cin >>nl>> n2; cin >> width;
result = nl +n2; cout << “the area is “ << length * width << endl;
cout << result; cout<<“Would you like another calculation enter”
brela'k, << yorY any other character to quit”;
} case 'S': ..... cin>> answer;
. . while (answer == ‘y’ | | answer == ‘Y’);
}  while (operation !=‘Q’); | J ( vl )
Luai M. Malhis 29 Luai M. Malhis 30
For-loop Common Mistakes with for loop

e Pretest loops
e Mostly count-controlled
e Have the format
for(initialization; test; update)
{ statement(s) }

// suppose you wanted to read 5 numbers and print their sum
intj, num, sum =0;
for(j=0;j<5;j++) {
cin >> num;
sum += num;

}

cout<<sum;

¢ Note if j is only used to control the number of imes this loop
executes, you could write for (j=1;j<=5;j++) ..orfor(j=5;j>
0;j-) ..... would give the same results.

Luai M. Malhis 31

e Missing braces — only the first statement is repeated.

int sum =0;

for (int 1 =1; I <=5; i++) // note that 1+2+3+4+5is 15
cout << I;
sum +=I;

cout << “ the sum is “ << sum;

prints: 12345  the sumis 5; why?

¢ Updating the loop control variable in the body of the loop
—the variable is updated twice.
for (int1=0; 1< 10;i++) {
cout<i<<endl
i++;
}
Prints:02468 why?

Luai M. Malhis 32




Omitting some of the loop parts
One, two, or all of the expressions may be omitted from the
for loop.
Sample 1: for(;x<10; x =x+2)
the initial value of x is taken from earlier part of code.

Sample 2: for(;x<10;)

the loop control variable must be updated in the body of
the loop to avoid an infinite loop.

Sample 3: for(; ;) // an infinite loop like while(1)

Loop updates and control must be done inside loop body
we will handle such loops later using break statement

What Loop should you use

* Any while loop can be converted into: do while loop or for
loop and vice versa.

e The loop to use depends on the problem?
* Should the loop always execute at least once?
> Yes = do-while No = while or for
* Should the loop be count controlled or sentinel controlled.
» Count =» for is the most common
» Sentinel=» while or do-while is most common
» For loops fit more naturally with count controlled
» While loops more naturally with sentinel controlled
» Do while are rarely used.

Examples
keep reading and printing chars until ‘#’ is read.
// while loop

int c; cin >>c;

while (c != ‘#') { cout << c; cin >> ¢;}
// for loop

charc; cin>>c;

for (;c '="#";) { cout << ¢c; cin >> c;}
// do while

charc; do{
cin >>c; cout << c;
} while (c!="#');

Example using for

Problem: Read 10 integers and print the smallest

Solution: (algorithm)
read first number consider it as smallest
then read next number and compare it with smallest
change smallest if the next number is smaller than smallest
Repeat the process until 10 numbers are read.

Code : int num, smallest;
cin >> num; smallest = num;
for (inti=1;1<10; i++){
cin >> num;
if (num < smallest)
smallest = num;

}

cout << “the smallest number is << smallest;




Example using while

Write code that keeps reading int numbers until 0 is entered find the
sum of all odd numbers and the product of all even numbers.

Code: int num; int sum =0; int product =1; // initial values
cin >> num;
while (num !=0) {
if (num%2) // if (num%2 ==1)
sum + = num;
else // if (hum% 2 ==0)
product *= num;
cin >>num; }
cout << “the sum of all positive numbers is “<< sum << endl;
cout << “the product of all negative numbers is “<< product << endl;

Nested Loops

Some problems require the use of a loop inside another loop.

Example keep reading integers until O is entered and for each read
integer n compute the sum of values from 1 to n inclusive

- Design and test outer loop
- Design and test inner loop
Code: for inside while
int num, sum; cin >> num;
while (num > 0) { // outer loop
sum =0;
for (inti=1;i<=num;i++) //innerloop
sum += num;
cout << sum << endl;
cin >> num;

Luai M. Malhis 38

More Nested Loops

For Loops can be “nested” inside another for loop
for (intj=1;j<10; j++) // outer loop
for (int k = 1; k<= 10; k++) // inner
cout << j << ‘X’ << k << “=" << j*k; << endl;
For each iteration of the outer loop the entire inner loop is executed
Another example: inti; j, sum;
for (i=1;i<=3;i++)
{ cout<<i<<endl
cin>>j; sum =0;
for(j=1;j<=n;j++)
sum +=j;
}loops read j and prints sum form 1 to j repeated 3 times

Luai M. Malhis 39

Inter loop dependence

inside loop is control dependent on outside loop
int outer, inner;
for (outer=1; outer<=5; outer++) {
int sum =0;
for (inner=1; inner <= outer; inner++)
sum += inner;

" "

cout << sum << ;
}
Theoutput: 1 3 6 10 15
Notice not using braces because the entire inner loop is
considered as one statement with respect to the outer
loop.

Luai M. Malhis 40




Using “Break” in Loops

e |tis a way to stop loop execution.

* It should be used very cautiously as it makes the code
more difficult to understand.

* Itis usually part of an if structure inside the loop
if (cond) break;

Example: Keeps reading and printing characters until
small letter is entered
charc;
while (1) {
cin >>c;
if (c>=‘a’ && c<=7")) break;
cout<<c;}

Common Use

* When the programmer writes a for loop or a while loop, but
wants to stop the loop when some value is reached.

char c; while (1) { cin >> c; if (¢ =='#) break; ....... }
intx; for (;;) {cin>>x;if (x%2) cout << x; else break;}

e Example 1: for (inti=0; 1<100;i++){
cout << i;
if (1==9) break; }
Prints: 0123456789

e Example 2: int x =10, sum =0;
while (--x) { sum += x; if (x ==5) break;}
cout << sum;

Prints: 35

Break in Nested Loops

* When break is used in an inner loop, it only interrupts that
loop, the iterations of outer loops would continue.

e When break is used in an outer loop, the inner loop is also
ended.

Example: int j =0;
while (j < 3){
for (int | =j; 1 < 10; i++) {
cout << I[;
if (I == 5) break; }
cout <<endl; j++; }
Prints: 012345
12345
2345

Using Continue in Loops

* Itis usually used with an if structure inside the loop

» Tells the loop to skip over the remaining statements

in the body and go execute the update statement
» Example 1:
for (int1=0;1<10; i++) {
if (1%2)
continue;
cout << [;

}
Prints: 13579




Using Continue in Loops (2)

Be carful when using continue in a while loop?
intl=0;
while (I < 10) {
if (1%2)
continue;
cout << [;
[++;

}

Prints O then goes to infinite loop

Using break and continue in same loop

Break and continue can be included in the same loop

Example 1:
for (inti=0;i<20;i++) {
if (i==5|]i==11]]i==13)
continue;
if (1==16)
break;
if (1>=4 &&i<8)
i=9;
cout << | << s
}

Prints 0,1,2,3,9,10,12,14,15

Example 2 on using break continue

inti=0; inti=0;
while (i++) { while(++i) {
if (i == 2) if (i ==2)
continue; continue;
if(i==8) if (i == 8)
break; break;
if(i<5) if (i<5)
cout<<i<<“”; cout<<i<<“”;
} }
cout << “1="<<i; cout << “1="<<j;

Prints: 1=1 Prints: 1,3,4, 1=8

More Example

Write code to keep reading one integer numbers and quits if
number greater than 100 is entered.

For each entered number print or not prime:
int num;
while (1) {
cin >> num;
If(num >= 100) break;
for (inti=2; i< num; i++)
if (hnum%i ==0) break;
if( i == num) cout << num << “is prime” << endl;
else cout << num << “is not prime” << end|;




Summation Example

Write the code to read x and y then compute the
following equation :

I=X
> 2*(Y+I?2), wherexandy>D0.
=1
Solution:
int x,y;
cin >> x>>y;

for (int 1 =1, int sum =0; | <=x; [++)
sum+=2*(Y+1*1);
cout << “The sum is “ << sum;

Programming problems using loops

Keep reading int numbers until 0 is entered, then
for each entered number n
if n >0 compute the sum of values between 1 and n
if n <0 compute the product of values between -1 and n

Solution:
intn; int product =1; intsum=0; cin>>n;
while (n) {
If (n >0)
for (inti=0; i<=n;i++) sum+=1i;
else
for (inti=-1; i>=n;i--) product *=1i;
cin >>n;
}

More Examples

e Print all small letters.
for (charc="a"; c<=7; c++)
cout << z << endl;

* Read int number n and print its factorial
int n, product =1;
for (int 1 =n; | >=1; I--)
product * = 1;

e Print all numbers 0 to 1000 that are even and divisible by 3
for (int 1 = 0; | <= 1000;I++)
if(1% 2 == 0 && 1%3 ==0)
cout << | << endl;

Summary
* |f statement can be used independent of else
e Else statement must be associated with an if

e Inif... elseif ... else construct: when one is true
no more checking is done

* Any loop can be converted to other type

e For loops are count controlled

* While loops are sentinel

e Be carful with the null statement in if and loops
if (x> 0); cout<<x; while (x> 0); x--;




