Computer Programming
An-Najah N. University
Computer Engineering Department

Luai Malhis, Ph.D,

Pointers

Luai M. Malhis 1

Definition

* Pointers are variables used to hold (and to
refer to) memory addresses of other variables.

 Memory addresses is the location of the first
byte of memory allocated for that variable or
array. Remember that the amount of memory
allocated to a variable is dependent on the
data type of the variable.

* You can learn the memory address of a

variable or array by using the address operator,
(the & symbol), before the variable name.

Luai M. Malhis

Definition continue

* A pointer variable is designated at time of
declaration by a * before the variable name.

—int *pntr;

o After declaration, a * immediately before a pointer
name acts as an indirection operator to refer to the
value stored in memory, and consequently, may be
used to change what is stored in that memory
location by an assignment statement.

cout << *pntr;
*pntr += 5;

Luai M. Malhis

Pointer Declaration

* Pointers are declared by specifying the type of
location (variable) they point at..

e Syntax:
type * name;
For all data types pointer size is 4 bytes
* For example:
each of the following pointer declarations.
int *p; char *tp; double *dp;
* When a pointer is declared it points to null
(not valid memory location)

Luai M. Malhis 4

Pointer Initialization 1

Before using a pointer to store or retrieve data from
memory location it must be initialized to a valid
memory location.

Valid locations are either:
exist: (static) variables of the same type
new: (dynamic) new locations of same type
Example: intx; int*p;
p = &x;

p = new int;

To delete memory allocated by new use: delete p;

Pointer initialization 2

e Suppose ‘p'is a pointer, then “*p'is the value in
memory location which "p' points to.

[5]

int x =5; int *p; X

p = &x; then Ja/

The location x can be accesses using *p or x.

e Example:

cout << *p;
*p =10; cout<<x;

Pointer Initialization 3
When a pointer is initialized it must point to a
location that can hold data of the same type;

Example: Given int *pl1; double *p2; char *p3;
intx; doubley; char z;

The following is valid initialization:

pl = &x; pl = new int;
p2 = &y; p2 = new double;
p3 = &z; p3 = new char;

The following is invalid initializations:
pl=&z, orpl=~&y; orpl=newdouble;
p2=&x; orp2=~&z, orp2=newchar

Pointer Initialization 3

e Pointer can only point to one location at a time;
e Example: Given intx=5,y=10; int *p;
p = &x; cout << *p;
p = &y; cout << *p;
p = new int; cout << *p;
* More than one pointer may point to the same
location. Example Given: int x; int *p1,*p2;
pl = &x; p2 = &x;
*p1=10; then
cout << x; or cout << *p1;

All prints the same value 10 because they all reference
the same location.

or cout << *p2;

Pointer Examples 2
Given: double *dp, d; char ¢ ='A’; What is valid?

Pointer Examples 1
Givenint x =5, y=10; int *p1, *p2;

what is the output of the following if valid? cin >> dp;
pl = x; cin >> *dp;
y = *p2; dp =&d; cin >> *dp;
pl=p2=8&x; cout<< *p2; d= &dp;
pl =&y; cout << *pl; cout<< *p2; dp = new double; d =*dp;
pl=8&x; x=y; cout<< *pl; *d=dp;
pl =&x; pl++; cout << *pl; dp = &¢;

p2 = &y; *(p2)++; cout << *p2;

dp = new double; *dp=c; orc=*dp;
dp=&d; *dp=*dp+c;

Pointers and Arrays 1

Remember that an array name refers to a group
of memory addresses, not just a single one.

The array name holds the address of the first
byte of memory allocated to that array.

Therefore, an array name, without the index,
may be considered a pointer to that array.

Array name is a static pointer and can only point
to the location assigned to it.

Because the array name already acts as a pointer
you do not need the address operator, &, to
output the first memory address.

Pointers and Arrays 2

* The indirection operator, *, may be used with the static

array name to store a value in the first array element.
*arrayname = 15;

* Values can be stored in subsequent array elements by

adding numbers to the array name and employing the
indirection operator

*(arrayname + 1) =25;
*(arrayname + n) =67;
arrayname = arrayname +5;

*arrayname = *arrayname + 5;

Pointer Arithmetic
Integer values may be added to or subtracted

from a pointer to move it to different locations
Example: Given int A[5]; int *p;

p=A; //p=&A[0];

p=A; then p=p+2;

p=8&A[2]; p-;

p=A;p=p+5;

p=A; p+=2; p[l]=18;

p = A+5; pl-1] = 20;
Important Note: With A index is absolute from A.
With p index is relative to pointer location

Pointer Arithmetic 2

* One pointer may also be subtracted from
another pointer.

* Example Given int A[10] ={1,4,6,10,12,20,22};
int *pl = &A[2]; int *p2 = &A[5];
cout << p2 —pl; prints 3

cout << *p2 - *p2; prints 14

* Pointers can not be added pl+ p2 has no
meaning in C.

pl=pl+*p2;
pl-= *p2;

Other Pointer Operations

* Pointers can be initialized at time of declaration.
float *fp= &fvar;
e Pointers, and memory addresses, may also be
compared using the relational operators.
pl<p2; pll=p2; pl==p2
e Static pointers can not be incremented
* Int A[10]; A= A+5; or A++; or A--; A[-1];
are invalid operations

e Since A is a static pointer it must always point to
the same location (first element of the array) and
can not be moved.

Static Arrays and Pointers 1

int A[10] = {12,4,7,10, 13, 16};

int *p1 =A; Then

A[0], *A, pl1[0] and *p1 all used to refer to the
first element of the array (12 in this case).

int *p2 = A+ 2; now p2 points to A[2]. Then

A[1] and *(A+1), p2[-1], and *(p2-1) all refer to
the second element of the array (4 in this case)

Int *p3 = &A[4]; p3 = p3-2; Then

A[2], *(A+2), p3[0], and *p3 all refer to the third
element in the array (7 in this case).

Static Arrays and pointers 2
Given int A[10] ={12,4,7,10, 13, 16}; int *p = A;
Then we can print array elements as follows:
for (int i =0; i < 10; i++) cout << A[i];
for (int i =0; i < 10; i++) cout << *(A+i);
(inti =0; i< 10; i++) cout << p[i];
for (int i =0; i < 10; i++) cout << *(p+i); //not *p+i;
for (int i =0; i < 10; i++) {cout << *p; p++;}
Note that:
for (inti =0; i< 10; i++) {cout << *A; A++;} is invalid

for

Dynamic Arrays

* So far we have allocated arrays statically.

Example int AI[20]. In which case array size is
fixed at compile time to 20 and can not change.

* However, C allows us to declare a pointer and
make it point to consecutive memory locations
(array) at run time.

e Example int *ap; Then we write:

ap = new int[30]; where we allocate array called
ap and we can use ap to refere to any element
in the array like ap[i]; i< 30; or *ap, or *(ap+i)

Dynamic Arrays 2

Array size may be entered by the user at run time.
Example: double *dp; int size;

cout << “please enter array size:”;

cin >> size;

dp = new double[size];

* You can access array elements using static method
or dynamic method, dp[i] or *dp; dp++; ...etc

* To delete memory allocated to the array we use
the statement delete [] dp;

Dynamic Arrays 3

e Be carful: In dynamic arrays if array pointer is
made to point accidentally outside the array
then the pointer can not be made to point
again to the array.

e Example given int *p = new int[10]; int x;
p = p+15; p now points outside the array and
can not make it point to the array again.

p = &x; p now points to memory location x and
can not make it point to the array again.

p = new int; p now points to new memory and
can not be made to point the array again.

Example 1

e Givenintx; int *pl, *p2; make p point to x;
and make p2 point to new location.
solution: pl =&x; p2=new.int;

e Given: double *dp, d; Which one is valid

a. dp =&d; b. d = *dp; c. d=&dp;
Given ints1[5] ={3,5,6}; ints2[5]; int *p;
which of the following is valid and why?

Examples 2

* Given int x[]={0,2,4,6,8,10}; int *y;
y=8&x[2]; *y+=1; *(y+2) +=2;
what is the new array content: {0,2,5,6,10,10};
e Given float x[10]={2.5,3.5,4.5,20.0,0.0,6.5};
float *p=x + (int) *x; float sum=0.0; inti=0;

while(*p && i < 10){ sum+=*p++; i++};
cout<<sum; what is printed? 24.5

e Given int x[6] ={1,5,3,4,0}; int *p=x+1;

a. s2=s1; b. p=&s1[6]; for(int i= *p; i>=0; i -=*x){cout<<"hello";}
c. s2=*p; d. p=sl+l; how many time hello is printed 5
Examples 3 Examples 4

Given an Array A of 100 int values, and int *p;
Write code to:

Print array content using static pointer A
for (inti=0;i<100; i++)
cout << A[i]; // cout << *(A+i);
Print array content using pointer p;
for(inti=0, p=A;i<100; i++)
cout << pl[i]; //cout << *(p+i);
// {cout < *p; p++;} This is not possible with A

Given an Array A of 100 int values, and int *p;

* Use p to replace all even values in A with O.
for(inti=0, p=A;i<100; i++)
{if (*p%2 ==0) *p = 0; p++;}

e Use pointer p to print all elements in the array
in reverse location 99,98,...0
for(inti =0, p = &A[99]; i < 100; i++)
{cout << *p << endl; p--;}

e Use p to sum all elements in A until first 0.

for(int sum =0, p = A; *p; p++) sum = *p;

Examples 5
Given an Array A of 100 int values, and int *p;
Declare two pointers pl and p2
(1) Make p1 point to the first negative value in A.
(2) Make p2 point to the last even value in A.

(3) Find the count elems. between p1 and p2 inclusive.

(4) Find the sum of values between p1 and p2.
Solution: int *p1, *p2;

(1) p1 = A; while(1) { if (*p1>=0) p1++; else break;}

(2) p2 = A+99; while(*p2%2) p2--;

(3) int elemcount = p2 — pl1+1;

(4) For (int sum=0, p = p1; p <=p2;p++) sum += *p;

Examples 6

Given an Array A of 100 int values, and int *p;

Declare two pointers pl and p2 make pl and p2
point to array locations index 20 and index 50
respectively, then (1) use pointer p to print all odd
values between p1 and p2 exclusively. Then (2)
copy all values between pl and p2 into new
dynamically allocated array.

(1) int * p1 = &A[20]; int *p2 = &A[50];

for (p = p1+1; p !=p2; p++) if (*p%2) cout << *p;
(2) int *t = new int [p2 — p1 -1];

for (p = pl+1; p 1=p2;) *t++ = *p++;

Example 7

e Declare a dynamic array of N double values
where N is entered by the user then read the
N double values and store them in the array.
Multiply each value in the array by 2. Then
print the new content array in reverse.

Solution:

int N; cin >> N; int *p = new double [N];

for (int *t =p, inti =0; i < N; i++, t++) cin >> *t;
for (int *t =p, inti =0; i < N; i++, t++) *t+=2;
for (int *t =p+N; t >=p;) cout << *t-- << end|;

Important points
e Pointer declaration: type * name;
* Pointer must point to a location before to be used.
* Pointer type and location type must be the same.
* Pointers can be subtracted. But can not be added.
e Static arrays (pointer) point to the first element.
 Static pointers can not change location it points to.
e Dynamic pointers can point to any valid location.

e Dynamic pointer can not only point to two or
more locations at the same time.

* Two or more pointers can point to same location.

