Computer Programming
An-Najah N. University

Computer Engineering Department
Luai Malhis, Ph.D,

Functions

Introduction

e Computer programs that solve real-world
problems are usually much larger than the
simple programs discussed so far.

* To design, implement and maintain larger
programs it is necessary to break them down
into smaller, more manageable pieces or
modules.

e Dividing the problem into parts and building the
solution from simpler parts is a key concept in
problem solving and programming.

Introduction Continues

* |In C++ we can subdivide the program into
blocks of code known as functions. In effect
these are subprograms that can be used to
avoid the repetition of similar code and allow
complicated tasks to be broken down into parts

e Until now we have encountered programs
where all the code (statements) has been
written inside a single function called main().
Every executable C++ program has at least this
function.

Function Definition

e Afunction Is comprised of heading and a body. Following
is the syntax of function definition.

return type function name (data type parameter(s))

{
statement(s); //function body

void main () int main ()
{ { statement(s)
statement(s); return (exp);

Examples

void print2lines ()
3k 3k sk sk sk sk sk sk sk 3k 3k 3k sk 3k sk sk sk sk sk sk sk sk sk sk sk ok .
{ cout<<” \n”;

Cout<<”**************************\nﬂ,
’

}

int sum2int (int a, int b) // params are declared
{ intc;
c=a+b;

return (c);}

Function Return Type

May be void, indicating that nothing will be
returned, or any of the data types (int, float,
double, char,..., or a pointer to type)

When the return type is any thing other than
void, a return statement must be part of the
function body. In this case the function return
a value (Value - Returning functions)

When functions are part of a conditional
expression they can not be void. Example
If (pow(2,3) >5)

Return Statement and its Placement

e Are included in value-returning functions
(non-void functions).

* Terminate the execution of statements in a
function. Any statements after the return
statement are not executed.

* Send a single value back to the calling

function may be main or another function.

e int f1(int x) { x = x *2; return x; cout << x;}
the cout statement never executed

Function Placement

* a function may be placed before main or

after main. If it defined after main, it
requires function prototypes. Example:

int f1() {inty;;return();} //impl.
double f2(int); // proto
void f3(char); // proto
void main(){.... F1...... F2.... F3}; //impl
double f2(int z) {......return();} // impl
void f3(char z) {....}; // impl

Function Prototypes

Act similar to a variable declarations.
Occur before its called in the file (before main).

Look similar to function heading except that it
ends in a semicolon and it does not require the
parameter name, just the data type.

void print2lines ();
int sum2int (int, int);

If the parameter name is included, it is ignored.

Function Format

//comments # include library files
include library files function prototype(s)
Global variables global variables
function definition(s) void main ()
{ {

statement(s) //body statement(s)
} }
void main () function definition(s)
{ {

statement(s) statement(s) // body
} }

Calling Functions

A function call is the statement that tells the
function to execute.

When execution of the function has been
completed, flow of the program returns to the
statement immediately after the call.

It has the format of
function name (parameters);

The parameters from the call are transferred to
the function heading.

Function calls for value-returning functions are
often part of assignment statements.

Examples of Function Calls

#include <iostream.h>

int readint() {int x; cin >>x}

void printint(int x) {cout << x << endl;}
int sum2int(int x, int y){ return(x+y);}

void main () {
int a,b,c;
a = readint(); b=readint();
c = sumz2int(a,b);
printint(c); }

More on Function Calls

A function can call another function or even
itself (recursive functions)

A single C++ statement may call more than one
function. Example: sqrt(x) + pow(x,y);

Function calls can be part of a condition.

if (sum2ints(6, 12) > 10) {statements}
if (function()) {statements}

Function could be part of an expression
X + function()

int y = function();

Parameters

* The parameters in the function heading are referred to
as “formal parameters” or arguments.

int add(int x, inty) { return(x+y);}

* The parameters in the function call are referred to as
“actual parameters” or arguments.

intw=10; cout << add(4,w);

* When the function call is executed, the actual
parameters are transferred to the formal parameters in
order that they appear in the call.

¢ We will discuss some restrictions later.

* Formal parameters and actual parameters are different
variables even if the have the same name

Passing Parameters

» Pass by value — a copy of the value from the actual
parameter is sent to the formal parameter of the
function. The function can not change the value of
the actual parameter.

* Pass by address (pointer)- the formal parameters
point to the actual parameters. The function can
change the value of the actual parameter.

» Pass by reference — the same memory location is
shared by actual parameter and the formal
parameter. The function can change the value of
the actual parameter.

Pass by Value
e Only the value of the actual parameter stored in
the formal parameter.

e The actual parameters and the formal parameters
are separate memory locations

e Example:
int f1(int x) { x = x/2; cout << x; return(x);}
void main() {int y =10;
cout << f1(y) << endl; //5;
cout << y; // 10

Pass by Value 2

Pass by can be generalized to include passing the
value of any expression to the function.

int f2(int x) { x = x/2; return x;}

In main() we can call the function as follows:

void main() { inty =10;
cout << f2(y); //5
cout << f2(30); // 15;
cout<<f2(25*2+vy); //30
cout << f2(f2(y)/2 + 15); // 10

Passing by Address

* The address of a variable is passed to the function and
the function access the variable using a pointer.

* Pass address of the variable using & operator
* Define the formal parameter as pointer in the function

e Use * operator to access and make changes to the
value of the variable from inside the function.

void f3(int *x) { *x =5};
void main{int y =10; f3(&y); cout << y;}

// it prints 5 because the function call changes the
content of location y in main using pointer x.

Pass by Reference

Reference is defining another name to previously
defined variable. Reference declaration syntax:

type & name = variable;
int x =5, y=10; int & z=x;
Now both x and z are names for the same location.

X—| 5 |=—1¢

cout<<z; //5 z=20; cout<<x; //20
Int & z=y;
Int & w;

Pass by Reference 2

* We can use references to pass variables to
functions by defining another name in the
function to the variable passed.

* Use reference name in the function to access and
make changes to the value of the variable from
inside the function.

void f3(int &x) { x =5};
void main{inty =10; f3(y); cout << y;}

// it prints 5 because the function call changes the
content of location y in main using reference x.

Function call Example Example (cont.)

e Suppose your know the length of the sides of a e The Function Definition would be
rectangle and you want a single function to

. void calcAreaPeri(float rect_length,
calculate both the perimeter and the area of the (ik

rectangle. float rect_width, float &perimeter, float * area)
e Your function would need 4 parameters, { perimeter =2 * rect_length + 2 * rect_width;
rect_length, rect_width, perimeter, and area. *area = rect_length * rect_width; }

e The parameters rect_length and rect_width
would be passed by value because you do not
want the function to change them. The
parameters perimeter and area would be e The function call would be: float p, a;
passe_d by reference or by address because the calcAreaPeri(4.6, 8.5, p, &a);
function calculates them and store changes.

e The function prototype would be
void calcAreaPeri(float, float, float&, float *);

Example (cont.) Summary of Passing Parameters

¢ Write main that calls the function

_ _ . * With pass by value, the actual parameter may be a
voidmain (){ floatlen, width, p=0,a=0; variable, constant , or an expression.

cout<<“Please enter the length and width. \n"; * Pass by reference the actual parameter must be

cin >>len >> width; //len=4 and width=6 variable name. use & in the function heading.
calcAreaPeri(len, width, p, &a); void Func(int & a, floatb, char & c){ }

cout<<“A rectangle of length "<<len <<endl; // 4 main () {intx, floaty, char z; Func(x,y,z);}

cout << “and width of ” <<width <<endl; //6 With pass by address, the actual parameter must be
cout << “and has a perimeter of “<<p <<endl; //20 the address of a variable and defined as a pointer in
cout <<“ and has an area of’<< a<< endl; /] 24 the function heading.

} Func (int *a, float b, char *c) { }

main () {intx, floaty, char z; Func(&x,y,&z);}

Passing Arrays to Functions

e An entire array can be passed to a function.
* In the function call, just use the array name
without any indices or subscripts.

— Often the number of elements in the array is
passed as another argument of the function call.

— Printarray(myarray, 30);

* In the function heading, the size of the array
should be left blank by using empty brackets
— void Printarray(float numbarray[], int size)

Some Details of Array Passing

* Previously in functions, we discussed that we
could pass parameters “pass by value or “pass
by reference” or pass by address.

* However, we cannot pass an entire array as
pass by value to a function.

e By default an array is passed in a similar
manner (to pass by value) as pass by reference.

* Any changes to array content in the function
will be permanent.

Example of passing Arrays to Functions

void printarray(float B[], int size)
{for (inti=0; i< size; i++) cout << B[i] << “ “;}

)

void mult2array(float B[], int size)

{ for (inti=0;i<size; i++) B[i] *=2;}

// all changes to array content will be present to main,
void main () {

float A[10] = {2.5,6.9,7.2,13.1,26.5};

printarray(A, 10); // 2.5 6.9 7.2 13.1 26.5
mult2array(A,10);

printarray(A,10); //5.2 13.8 14.4 16.2 53

Returning a pointer to memory

* Instead of returning a value from a function a pointer to a
memory location may be returned provided that the
memory location allocated dynamically (using new).

int * f(inta) {int b; int * p = new int[10]; return(p)}
void main () {int *x; x =f();}
Now x points to new memory pointed to by p.

* Never return a pointer to a (temporarily) variable declared
in the function heading or body. Because the memory
location disappears when the function end.

* Inthe example above the function should not include
the statement: return (&a) or return(&b).

Designing Functions

* When we design a function we should
consider the following points:

* What do | want this function to do?
* What parameters do | need and their type?
e Should this function return a single value?

* if so what is the data type of the returned
value?

e What local variables need to be defined
within this function?

e Etc.

Example 1

e Write a function to print “Hello” on the screen n
times where n is passed as parameters. And
write main to call the function .

void printhello (int n) {
for (inti=0;1<n;i++) cout << “hello”; }
void main() { intx;
printhello(5);
cin >>x; printhello(x);
printhello(x*2+19);

Example 2

* Write a function that takes an int passed by value,
a double passed by address and char passed by
reference. In your function multiply the double
by the int value and store result in the double
value. Add the int to the char value and store the
result in the char value. Also return the sum of all
three variables. write main to call the function;

double comp (int a, double *p, char *c) {
*p=*p*a, c =c+a; return(a+ *p+c);}
void main() { int x =5; double y = 12.5; charz = "A’;
double w = comp(x, &y, z); }

Example 3

e Write a function that takes two characters c1 and
c2. Print all characters between them. Your
function return the count of printed chacaters.
Example if c1 =f; and c2 = p; prints aghijklmnop.
returns 11
int printchar (char ch1, char ch2) {

int count =0;
for (char ch = ch1; ch <= ch2; ch++,count++)
cout << ch;

return(count); }

Example 4

* Write a function that takes an array of characters
and array size. Your function returns a pointer to
new dynamically allocated array that contains all
small letters in the passed array.

char * getsmall (char A, int size) { int scount = 0;
for (inti=0; | < size; i++)
if (A[i] > ="’ && AJi] <= ‘Z’) scount++;
char *p = new char[scount]; char *t =p;
for (inti=0; | < size; i++)
if (A[i] >=a’ && A[i] <= ‘Z’) *t++ = AJi];
return(p); }

Example 5

Given: double M[20][10]. Write a function that takes the
matrix M as parameter. Your function computes and
returns the smallest value in the matrix.

double small (double A[20][10) { //must define # columns
double small = A[0][0];
for (intr=0; r < 20; r++)
for (intc=0; c < 10; c++)
if (A[r][c] < small) small = A[r][c];
return(small); }
void main() { double M[20][10] ={{..},{....},{....}};
cout << small(M);}

Global vs. Local Variables

A variable that is declared within a block is “local”
to that block and may only be accessed within that
block. Block is enclosed within { }

Therefore, a variable declared in a function
definition (either heading or body) is local to that
function.

Several functions may use the same identifiers as
variable names, but each is stored in a different
memory space.

F1() {int x;} F2() {intx} main() {int x}

Global variables are declared outside all functions
and may be accessed from anywhere.

intx; f1(){ x=5;} f2(){x+=2;} main() {x..

Variable Scope
The variable is known from the point it is defined in a block
and any sub block in that block.
A block is the code between { }
e Example 1: if (1) {int x; x =5;}
The cout statement accesses x outside the block

// syntax error

* Example 2 :{intx=2;
{inty=3; cout <<x; cout<<y;
{intz=12; cout<<z<<x<<y}
} // all good
cout <<y; cout << x; //syntax errorony
} cout << x<<y<<z; //xyandznot known

