Computer Programming
An-Najah N. University

Computer Engineering Department
Luai Malhis, Ph.D,

Structures

Definition
e Structure is a user defined data type, that is build of
basic data types (char, int, double,....).

e Structure allow many variables of different types
grouped together under the same name.

e To define a structure we use the following format:
struct name

{

type memberl;
type member2;

Structure Definition Example

e We can Define a structure called person which
is made up of a string for the name and an
integer for the age and a double for salary.

e struct person

{

char name[20];
int age;

double salary;

%

Defining Variable of A structure

* Previously we defined a data type called person.

* However, we must create a variable of that type to
be able to use it.
* Following is sample variable declarations:

#include<iostream.h>
struct person{ char name[20]; int age; double salary;}

void main() {
person p1l; // variable of type person

person *ptr; // pointer of type person
person PA[100]; // Array of persons }

Accessing member variables

» After defining a variable of type structure, we can
access structure member variables using the ’ (call
it dot) operator.

* Inthe previous example to access member fields of
the structure we place a dot between the structure
variable name (p1) and the name of a member
variable (name, age or salary).

pl.age , pl.salary, pl.name

e |f the variable is a structure we use and arrow ->
to separate pointer name and field name:
ptr->age, ptr->salary, ptr->name;

Structure Initialization

* Like other data type we can initialize structure
when we declare it. As far initialization goes
structures obey the same set of rules as
arrays. We initialize the fields of a structure
following structure declaration with a list
containing values for each filed.

e Assume we have the following structure
definition:
struct Employee{ int emp_id; char name[25];
char department[10]; float salary; };

Structure Initialization 2

We can initialize a variable of type employee
when we declare it as follows

* Employee empl
={125,"basil”,”"marketing”,500.00};

e This initializes the emp_id field to 125, the
name field to “basil”, the department field to
“marketing” and the salary filed to 500.0.

* We can use assignment statement to initialize
one structure to another. Example:

Employee emp2 = empl;

Structure Initialization 3

* We can initialize a variable of type employee one
field at a time using the assignment operator.

Employee emp3.

emp3.salary = 2470.28;
strcpy(emp3.name, “Ahmad”);
strcpy(emp3.department,’sales”);
emp3.emp_id = 27;

* We can also use cin statement to read fields of a
structure: cin >> emp3.name; cin >>emp3.emp_id;

cin >> emp3.salary >> emp3.department;

Pointer to structures

* When declaring a pointer to structure, before
we use the pointer to access member variables
the pointer must be made to point to an existing
structure or new structure. Example:

Employee emp4 ={133,"nael”/’sales”,1234.5};
Employee *ptl, *pt2, *p3;

ptl = &emp4; // pt points to existing structure;
pt2 = new Employee;

pt3 = ptl;

Pointer to structures 2

* Then to access member variable use the “->” to
separate pointer name and field name. Example

strcpy(pl->name,”Nader”);
pl->emp_id = 1234;
strcpy(pl->department,”Human Resources”);
pl->salary = 1765.5;

// Note: Employee *p5; p5->emp_id = 1234.6;
is invalid because p5 does not point to a an
variable of type structure or to new structure.

Array of structures

 |tis possible to define an array of structures. for
example if we are maintaining information of all
the students in some university. We need to use
an array of structures to maintain information
about all students.
struct info
{
intid_no; char name[20];
char address[20]; int age;
2
Then, we can define an array of structure
information as follows: info student[100];

Array of Structures 2
* Then can access member fields as follows:
student[0].id_no = 212;
strcpy(student[4].name,”walid”);

int x; cin >> x; cout << student[x].age;

* We can also declare and array of pointers to

structure as follows: info *stptr[200]; Then to we
can access member variables as follows:

stptrp[10] = new structure;
stptr[10]->age=19; strcpy(stptr[10]->name,”ab”);

Example:

#include<iostream.h >
struct info
{ intid_no; char name[20]; char address[20]; intage; }
void main() {
info std[100]; intl,n;
cout << “Enter the number of students”; cin>>n;
cout<< “Enter Id_no, name, address, and age”);
for(1=0;l < n;l++) {
cin>> std[l].id_no >> std[l].name;
cin>> std[l].address >> std[l].age; }
cout << “Student information”;
for (1=0;I< n;l++) {
cout << std[l].id_no << << std[l].name << “ “;
cout << std[l].address; << “ “ << std[l].age << endl;

" “

Nested Structure

* A structure may be defined as a member of
another structure. In such structures the
declaration of the embedded structure must
appear before the declarations of other
structures. Example

struct date { intday; intmonth; intyear;};

struct info

{
intid_no; char name[20];
char address[20]; int age;
date dob;

2

the structure student constrains another structure
date as its one of its members.

Accessing member variable of
Nested structure

e Given: info stl; info *ptr; Then
strcpy(stl.name,”Adel”);
stl.id no =223344;
stl.dob.day = 12; stl.dob.month =09;
stl.year = 1998;
ptr = &st1;
cout << ptr->name; cout << pt->id_no;
cout << ptr->dob.day << ptr->dob.month;

Pointer inside a structure

e A structure may contain a pointer to a variable to

another structure. Programmers must be carful to
allocate memory to these pointers before accessing
them. In this case we must allocate memory to each
structure then use the -> to access each member.
Example:

struct data { int age; char *name; }; data ex; Then:
ex.age = 21; ex.name = new char[30];
strcpy(ex.name,”abc”);
data * ptr; ptr = new data; ptr->name = new char[20];
ptr->age = 22; strcpy(ptr->name,”abc’);

Examples Example 1

* Given the following definition: * Write code to declare a variable of type info

* struct info call it s1 and give it the following values 123

{ forid, “wael” for name, “jenin” for address

int id_no; and 21 for age.

c:ar ng(rjne[ZOz],;) * Solution1: info s1;

icntaz: ae. ress[20]; sl.id no=123; strcpy(sl.name,”wael”);
) Be; sl.age = 21; strcpy(sl.address,”jenin”);

* Solution 2:
info s1 ={123,"wael”,”jenin”,21};
Example 2 Example 3

* Define a pointer to structure and make it point
to s1. Then use the pointer to print s2.

info *ptr = &s2;

cout << ptr->id_no; cout << ptr->name;

* Define another variable of type info call it s2
and read information of s2 from the keyboard.

e Solution: info s2;

cin >>s2.id_no; cin >>s2.name;

. . cout << ptr->address; cout << ptr->age;
cin >> s2.address; cin >> s2.age; P ; ptr->age;

* Define a pointer to info and call it ptr; allocate

_ new memoy to ptr and read info from the K.B.
e Print the content of s2 to screen. _ N .
_ info *ptr = new info;
cout << s2.id_no; cout << s2.name;) . .
cin >> ptr->.id_no; cin >> ptr->.name;
cout << s2.address; cout << s2.age; : .

cin >> ptr->address; cin >> ptr->.age;

Example 4
* Declares an array called A of info of size 1000
then read the structure content from the K.B.
info A[1000]; int n; cin >>n;
for (inti=0;1<n;i++) {
cin >> A[il.id_no; cin>> A[i]l.name;
cin >> A[i].address; cin >> A[i].age; }
e Suppose we have info *ptr = A; then
for (inti=0; | <n; i++, ptr++) {
cout << ptr->id_no; cout << ptr->name;
cout << ptr->address; cout << ptr->age;}

Passing structure to functions

We can pass structures as arguments to a
functions, and retrun structures from functions.

A structure may be passed into a function as
pass by value, reference and by address.

You can also return a structure from a function or
apointer to dynamically allocated structure in
the function.

A program example is to display the contents of a
structure passing the individual elements to a
function is shown next.

include < iostream.h >

e struct Employee{ intemp_id; char name[25];
char department[10]; float salary; };

* Employee readEmp() { Employee emp1;
cin >>empl.name; cin >>empl. emp_id;
cin >>empl.department; cin >> empl.salary;
return(empl); }

e void printEmp(Employee e)
{ cout<<e.name; cout << e.emp_id;
cout << e.department; cout << e.salary; }

e void main() {Employee em1; eml =reademp();
printEmp(); }

Example

e Write a function that takes and array of info as
parameter and array size; in your function
return a stucture of the oldest students.

info largSt(info A[], int size)
{
info st; st =A[0];
for (inti=1;i< size; i++)
if (st.age < A[i].age) st = AJil;
return(st);

Other Examples

e Given an array of structure info call it A, size 100
Write code to do the following

(1) Print the the count of students that start with
the letter ‘A’ or ‘a’, Start and end with same letter.

the count of names larger that 10 characters.
print the name of students that are from Jenin.

(2) sort the array A in according the name in
ascending order. Then compute total salaries.

(3) Sort the array A in descending order according to
salary. Print employee name of the largest salary.

pl
int counta =0, countsl =0, countg10 =0, jen =0;
for (inti=0;i<100; i++)

{
if (A[i].name[0] == ‘A" && A[i].name[0] == ‘@’)
counta++;
if(A[i].name[0] == name[strlen(A[i].name)-1]))
countsl++;

if(strlen(A[i].name) > 10) countgl0++;
if (strcmp(A[i].name,”Jenin”) jen++;

p2
Info temp;
for (inti=0;i<99;i++)
for (intj=i+1; j < 100; j++)
if(strcemp(A[i].name,A[j].name) > 0){
temp = A[i];
Ali]l = A[jl;
A[j] = temp;
}
// compute total salaries.
int sum =0; for (int | =0; | <100;i++) sum+= Ali].salary;

p3
info temp;
for (inti=0;i<99;i++)
for (intj=i+1; j < 100; j++)
if(A[i].salary < A[j].salary)
{
temp = A[i];
Alil = ALl;
A[j] = temp;
}

cout << “the highest salary is “ << A[i].name <<
“with salary” << A[i].salary.

