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Preface
The genesis for this book was my involvement with the development of the
SystemView (now SystemVue) simulation program at Elanix, Inc. Over several
years of development, technical support, and seminars, several issues kept recur-
ring. One common question was, “How do you simulate (such and such)?” The sec-
ond set of issues was based on modern communication systems, and why particular
developers did what they did. This book is an attempt to gather these issues into a
single comprehensive source.

Chapter 1 presents a discussion of the basic elements of a communication sys-
tem. It serves as a reference for subsequent chapters by briefly describing the various
components of a communication system and their role in the system.

Chapter 2 develops the theory of linear time invariant (LTI) systems, which is
the foundation of communication theory. The basic concepts of the filter impulse
response and convolutions are presented. From there we consider the workhorses of
LTI systems, namely the Fourier and Laplace transforms. We end with the simple
development of the fast Fourier transform (FFT), which has revolutionized signal
processing.

Chapter 3 deals with the concept of sampling. As digital processors become
faster, more and more of the system processing is performed in this domain. A thor-
ough understanding of the Nyquist sampling theorem and other issues is vital to the
successful implementation of these systems.

Chapter 4 provides the fundamentals of filters, as they are the most common
element of a communication system. We start with the concept of filter phase and
group delay via a simple two-tone input example. From there we separate the dis-
cussion into the two common classes of filter finite impulse response (FIR), and infi-
nite impulse response (IIR).

Chapter 5 concentrates on the concept of digital detection. Most modern com-
munication systems use digital formats as opposed to analog (AM, FM). The funda-
mental results of optimum digital detection are derived along with several
equivalent processing architectures.

Chapter 6 is concerned with the various methods of conveying information in a
digital format. Physically, the transmitted wave is a sine function. One can convey
information only by modulating the amplitude, frequency, phase, or combinations
thereof this basic signal. This chapter also provides a discussion of spread spectrum
modulation concepts including both frequency hopping and direct sequence.

Chapter 7 is the complement of Chapter 6 in that it describes techniques for
demodulating the transmitted signal at the receiver. The basic architecture of
in-phase and quadrature processing is detailed. In addition, the methods for recov-
ering frequency, phase, and data timing (synchronization) are considered.

Chapter 8 deals with the important concept of baseband pulse shaping. The
radio frequency spectrum is an economic quantity that the United States govern-

xiii



ment auctions to service providers. The goal of the provider is to provide as many
data channels as possible within this spectrum. This goal is commonly achieved by
limiting the signal spectra by using baseband processing such as raised and root
raised cosine filters.

Chapter 9 presents the heart of digital communication performance analysis: the
bit error rate (BER) calculation. Here we detail methods for simulating BER calcula-
tions. Two issues are of concern. The first is how to match the timing of the input
data stream with the recovered one. The system under test will have various delays
via encoders, filters, and so on, so the output data will be delayed in time with
respect to the input. The second issue is how to calibrate the signal-to-noise ratio
(SNR) for proper interpretation of the results.

Chapter 10 describes what happens to the signal between the transmitter and
receiver. This is called the channel. Fading is the most important channel. The signal
can bounce off of various objects and present to the receiver several versions of itself
modified in amplitude, frequency, phase, and time of arrival. The effect of this is the
well-known fading phenomena. This chapter describes various forms of the fading,
as well as methods to mitigate their effects.

Chapter 11 deals with the real world of nonlinear amplifiers. The nature of these
nonlinearities are described and modeled. Both standard RF amplifiers and satel-
lite-based traveling wave tube amplifiers are discussed.

Chapter 12 concerns the simulation of communication systems using baseband
concepts. Unless there are nonlinear elements in the RF section, one can mathemati-
cally eliminate the carrier operations from the simulation. This is important since
simulating the carrier requires a very high system sample rate to adequately describe
the carrier. By contrast, the information content on the carrier may have a informa-
tion bandwidth several orders of magnitude smaller. The baseband simulation
allows accurate simulation while only sampling at a rate sufficient to represent the
information source. This presents orders of magnitude savings in the simulation
time.

Chapter 13 concludes the book with a look at the emerging technology of
ultra-wideband (UWB) systems. The two competing technologies, direct sequence
(DS) and orthogonal frequency division multiplexing (OFDM) are presented.

As with any lecture course, an attendant laboratory can be used to emphasize
and further enhance the material through direct demonstrations. To this end we
have included a disc containing example files using the simulation software
SystemVue. The reader is urged to run these files, and vary the various system
parameters as permitted. It is hoped that these examples will greatly enhance the
readers understanding of the text material.

xiv Preface



C H A P T E R 1

Elements of a Communication System
In this first chapter we introduce the basic components of a communication system.
The system diagram is shown in Figure 1.1.

We have emphasized the major elements of the system as the transmitter, chan-
nel, and receiver. Each of these elements has several subcomponents. We shall work
our way through this diagram starting with the information source, and ending with
the recovered information. The ideas and issues pertinent to each sub-block will be
described.

1.1 The Transmitter

The task of the transmitter is to take an information source and after several steps of
processing, produce a signal at some carrier frequency over the air.

1.1.1 The Data Source

Since we are dealing with digital communications, information will, regardless of
the source, eventually be converted into bits. However, the origins of the informa-
tion may be either digital or analog.

Types of sources that might be considered digital include a text message (e.g.,
Stop), a numeric value (e.g., 78°F), or a tuning command to some object (e.g., a mis-
sile). As an example, the Global Positioning Satellite (GPS) system has a 50-bps data
message that provides the user with system time information and the ephemeris data
of the transmitting satellite.

The most common types of analog sources are voice and pictures. These sources
are sampled, according to the rules of Chapter 1, and the results are converted to a
bit pattern.

1.1.2 Source Encoding

In many cases, the data is not independent from one sample to the next; there is
some correlation or redundancy. Mathematical techniques called compression
algorithms can be applied to the data. This compression reduces the number of bits
that must be transmitted, or equivalent, the system bit rate. This is highly desirable
since bit rate translates into required system bandwidth, which is usually a premium
economic quantity. At the receiving end, these same algorithms recover the original
message without loss of information.
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One simple algorithm is called run length encoding. In this scheme a numeric
sequence (5, 9, 6, ...) tells us that the information is five 0s, followed by nine 1s, fol-
lowed by six 0s, and so on. The .zip application on personal computers (PCs) is a
well-known compression system.

1.1.2.1 Audio or Voice Compression

The goal is always to reduce the transmitted bit rate of a system, thus reducing the
required over-the-air bandwidth, which, in turn, allows for more users to be accom-
modated in a prescribed bandwidth. This is a very important issue for the wireless
community.

Another area is antijam systems. In these systems the input bit rate is greatly
expanded by codes such as pseudo random (PN) or Gold codes. The processing gain,
or antijam effectiveness, is the ratio of this high-speed data rate to the input data rate.

The human voice generally occupies a bandwidth from 300 Hz to 3 kHz. In
Chapter 3 we show that to sample such a source, a minimum rate of 6 Kbps is
required. The digital phone system uses 8 Kbps with 8 bits of amplitude, producing a
64-Kbps data stream. For wireless systems, this rate is much too high. However, the
information from one 8-Kbps sample to the next is generally not independent, so
some form of compression algorithm is used.

Delta Modulator
The delta modulator is a simple device. The output at time t + 1 is a “1” if the signal
at t + 1 is greater than the signal at t; otherwise, the output bit is a “0”. Figure 1.2
shows the basic block diagram of the delta modulator. The demodulator is simply
an integrator, and this is shown in the figure as well.

Figure 1.3 shows the overlay of the input and output signal. Figure 1.4 shows
the resulting binary data stream derived from the input signal.

2 Elements of a Communication System
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Figure 1.1 Block diagram of a communication system.



Sigma Delta Converter
Sigma delta converters are very powerful. They are commercially available from a
variety of vendors. Figure 1.5 shows a simple version of this converter. The advan-
tage of this technique lies in the quantization noise (i.e., the difference between the
original signal and the quantized version).

Figure 1.6 shows the spectrum of the quantization noise for both the simple
analog to digital (A/D), and the sigma delta quantizer. Note in Figure 1.6 the low
frequency role-off of the quantization noise for this technique, giving it improved
performance over the ordinary quantizer.

Pulse Code Modulation
With pulse code modulation (PCM), the analog time sample is quantized into 2n lev-
els, which can then be represented by n bits. If Rs is the symbol sample rate, then the
resulting bit rate will be Rb = nRs. This is accomplished by using an analog limiter
called a compression expander (COMPANDER). The COMPANDER is inserted
between the analog source and the sampler. There are two commonly used stan-
dards.

1. µ = 255 Law: This version is common in the United States and has the
transfer function

( ) [ ] [ ]
( )

z z x x x

x x

x

= + +

= ≥

= − <

max maxsgn ln ln

sgn

1 1

1 0

1 0

µ µ

for

for
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Figure 1.2 Block diagram of a delta modulator and demodulator.



2. A = 87.6 Law: This version is used in Europe has the transfer function

( ) ( ) [ ]
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z z x A x x A x x A

z x A x x

= + < ≤

= +

max max max

max m

sgn ln
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1 0 1
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The phone system uses a system with samples at 8 Kbps, and 8 bits/sample, giv-
ing a transmitted data rate of 64 Kbps. Figure 1.7 is an overlay of these transfer
functions.

Vocoders
Vocoders are conversion algorithms working on voice input. The human voice is
quite redundant, and these compression algorithms can produce output rater far
less than that of the 64-Kbps PCM system just mentioned. Vocoders are compli-
cated algorithms that work on blocks of data usually 5 to 20 ms long. The basic idea
is to model the physiology of the voice tract and extract features such as pitch.

1.1 The Transmitter 5

Figure 1.5 Sigma delta converter block diagram.
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1.1.3 Forward Error Correction

Forward error correction (FEC) coding is a system to improve the system BER per-
formance. The basic concept is a process that takes in k bits and encodes them into n
> k bits. The ratio r = k/n is called the rate of the code. This action will increase the
required system bandwidth, but it is well worth it in practice. It is therefore desirable
to keep r as close to unity as possible. Commonly used values are r = 1/2 and r = 2/3.
There are several types of FEC codes.

Block FEC
As the name implies, this encoder takes in block of k bits, and performs the encoding
process to produce a block of n bits. The rate, r, of the code is r = K/n. Powerful
mathematical systems have been used to provide efficient decoding algorithms. The
number of transmitted errors that the decoder can correct is usually denoted by t.
Thus, the 23-bit triple error correcting Golay code has (n, k, t) = (23, 12, 3). It is a
perfect code in that it will correct any combination of three or fewer errors, but no
combination greater than three errors. Other common block codes include the Base
Chadhur Hocquenghem (BCH) and Reed-Solomon codes.

The BER performance of a block code can be approximated by the formula

( )P ee
r tt E Nb∝ − 1 0

Where Eb/N0 is the energy per bit, as described in Chapter 5. Without the coding
the error rate is

P ee
E Nb∝ − 0

What is happening is a trade-off. The energy per encoded bit is less than the orig-
inal energy per bit since we put out more encoded bits in the same amount of time.

The power of the code can be increased by taking larger blocks of n and k, such
that the code rate remains nearly constant, but the correction capability t increases.
From the above two relations, we see that for a code to be effective it must have the
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relation r(t 1) > 1. For the Golay code just mentioned we have, r(t 1) = [12/23]*4
= 2.09

Convolutional FEC
The convolutional FEC encoder works more like a tapped delay line filter, as shown
in Figure 1.8.

The input data is sequentially clocked through the series of K shift registers, as
shown. Attached to these registers are sets of logic, two in this case, that produce
one output bit each per input clock cycle. In this case, the diagram gives an r = 1/2
rate code. The number of registers, K, is called the constraint length of the code: the
larger the K, the more powerful the code. The decoding algorithm that revolution-
ized the use of convolutional codes was derived by Viterbi, and the algorithm bears
his name. One problem with this algorithm is that the computational load grows
exponentially with the constraint length K. Thus, the question of the existence of
“good” short K codes was an issue. This question was answered positively by a
paper written by Heller and Jacobs.

One major advantage of the Viterbi algorithm is that it can operate on soft deci-
sions. In a hard decision decoder, a decision 1 or 0 (hard) is made on the individual
bits before the decoder. It can be shown that this leads to a performance loss of
about 2 dB. The Viterbi algorithm can be modified to work on a quantized bit, usu-
ally 3 bits or eight levels, which recover most of this loss. Such a modification is
extremely difficult for a block decoder.

When simulating FEC codes, remember that the sample rate changes across the
FEC coder and back again across the decoder. For a rate 1/2 code, the output rate is
twice the input. Care must be taken in the algorithm code to handle this situation.

1.1.4 Interleaving

If the only effect of the channel is to add white noise, the errors caused will be statis-
tically random. However, it possible for the channel to become suddenly very bad,
due to fading and other effects, thus obliterating a whole block of data. One solu-
tion to this problem is to interleave the data. The idea is to take a successive block of

1.1 The Transmitter 7
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k input bits and separate them with bits from successive blocks in such a way that
the out block contains only 1 bit per input block. The effects of the fade are
mitigated by the deinterleaver at the receiver, producing one error per block that the
FEC can generally handle.

The most common interleaver is the block interleaver. In this method an array of
say n × k bits is established. The incoming bits are stored row by row. When the
array is full, the bits are read out column by column. A second type is the
convolutional interleaver. Table 1.1 shows a 3 × 3 array.

The data is read in by rows (1, 2, 3, 4, 5, 6, 7, 8, 9), and read out by columns (1,
4, 7, 2, 5, 8, 3, 6, 9).

1.1.5 Baseband Filtering

Baseband filtering is used to reduce the bandwidth of the transmitted signal. The
objective is to perform this filtering without introducing intersymbol interference
(ISI). In Chapter 8 we take up this operation in detail.

1.1.6 Modulation

A modulated signal, s(t), on a carrier f0 can always be written in the form

( ) ( ) ( )[ ]s t A t f t t= +sin 2 0π ϕ

where we note that frequency modulation is another form of phase modulation since
the two are related by a derivative, f(t) = dϕ(t)/dt. A convenient alternative to this
representation is

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]

s t I t f t Q t f t

I t A t t

Q t A t t

= +

=

=

cos sin

sin

cos

2 20 0π π

ϕ

ϕ

In Chapter 6 we will describe several standard formats such as PSK, QPSK, and
QAM.

1.2 The Transmission Channel

The transmission channel is the medium between the transmit antenna, and the
receive antenna.

8 Elements of a Communication System
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1 2 3

4 5 6

7 8 9
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1.2.1 Additive White Gaussian Noise

Additive white Gaussian noise (AWGN) is the most fundamental impairment. The
term “white” implies that all frequencies are of equal strength, and “Gaussian”
describes the amplitude distribution. Note that these are independent concepts. You
can have one without the other.

The receive antenna essentially sees thermal radiation with a nominal 290°K
temperature. The exception to this is when the antenna is looking out to space, as a
satellite receive station antennal would be. In this case, deep space is considered a
black body with a 4°K temperature. Another deep space noise source is the so-called
galactic noise. A space-borne antenna, which sees part of the Earth and part of deep
space, will have an equivalent temperature at some intermediate temperature value.

1.2.2 Interference

The radio spectrum is crowded. All sorts of users are transmitting all sorts of sig-
nals. Some of the interferers might be directly in band. The classic case of an in-band
interferer is an intentional jammer trying to deny a military link. In other cases,
strong signals in adjacent frequencies can spill energy into the desired band. Most
receiver components such as amplifiers are nonlinear. A strong signal in any band
can then produce harmonics just about anywhere.

1.2.3 Fading

The signal from the transmitter can bounce off objects in the immediate area of the
transmission link, as shown in Figure 1.9. These reflected signals can arrive at the
receiver and combine with the direct signal.

In the simplest concept, consider one reflected path that arrives at the receiver
with the same amplitude, but 180° out of phase with the direct signal. The result is
complete signal cancellation.

1.2 The Transmission Channel 9
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Fading is generally divided into several categories. A flat fade is one where all
frequency components of the signal are affected equally (i.e., the spectrum
“breathes” up and down as a whole). A selective fade is one where only specific fre-
quencies are affected, so the received spectrum appears to have notches. A fast fade
is one where the channel dynamics are faster than the information rate.

In many systems it is this interference that limits the system performance, not the
AWGN.

1.3 Receiver

A receiver is orders of magnitude more complicated to design in the physical world
or to simulate than the transmitter. This is because the receiver must recover all sorts
of system parameters before a successful demodulation can be performed.

1.3.1 Frequency Offset

Even if the transmitter and receiver are not moving with respect to each other, there
are frequency offset problems. What the transmitter clock says is 100 MHz is not nec-
essarily what the receiver clock says is 100 MHz. Sometimes this effect is negligible.
The more accurate the clocks, the better, but they become more expensive as well.

Even in a perfect clock world, there can be motion between the transmitter and
receiver. Mobile wireless is a perfect example. This motion produces a Doppler shift
of the transmitted frequency by an amount fd = (v/c)f0, where f0 is the transmitted car-
rier frequency, v is the component of velocity toward the receiver, and c is the speed
of light.

In the signal intercept area, an observer sees a “blob” of energy on a spectrum
analyzer. He then places makers on this energy to queue an local oscillator (LO)
down conversion. However, this frequency estimate is approximate, and in fact can
be quite large.

In Chapter 7, we will describe several algorithms for obtaining these offsets.

1.3.2 Phase Offset

Many modulations convey the information in the phase of the transmitted signal.
For QPSK, the typical coding of 2 bits to a phase is shown in Table 1.2.

It should be noted that the phase of the receiver oscillators are not synched to the
phase of the transmit oscillators, even if their frequencies are identical. Thus,
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Table 1.2 QPSK Symbol
Representation

Bits Phase

00 0

01 π/2

10 π

11 3π/2



received values can be shifted by some unknown value α. If α = π/2, a complete
decoding failure would occur.

Tracking loops such as the Costas loops have been designed to eliminate this
offset. But even these generally have an ambiguity problem. The loops cannot dif-
ferentiate the case when the received phase has been rotated into another possible
phase as mentioned above.

The solution is to differentially encode the phase. The decoder recovers the
information by subtracting two successive phase estimates, thus eliminating this
ambiguity. In the wireless IS-95 and other code division multiple access (CDMA)
systems, the base station actually transmits an unmodulated data signal that the
receiver can use to lock to and recover the absolute phase reference.

1.3.3 Timing Offset

The next problem is system timing. The fundamental timing unit is the encoded bit
or symbol. The receiver needs to know when to sample the raw demodulated wave-
form to recover the information in an optimum manner. The last stage of a demodu-
lator is usually a matched filter that is sampled once per symbol, but at the correct
time to maximize the SNR.

If the system has FEC, then the timing that tells the FEC decoder where a data
block begins must be established. This is called word or frame sync.

1.3.4 Data Recovery

At this point we have recovered the basic data symbols. What remains to be done is
to recover the original data bits or analog (voice) content. The procedure is to per-
form the inverse operation for each of the steps encountered in the transmit-
ter—performed in reverse order, of course. Thus, as required, we deinterleave, FEC
decode, and convert via the source compression algorithm back to an analog signal.

1.4 Conclusion

In this chapter, we presented the basic elements of a communication system, from
the information source (in) to the recovered information (out). We described the
various steps taken in the transmitter, through the channel, and by the receiver to
recover the data. The receiver is much more complicated due to the various synchro-
nization steps required for proper data recovery.
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C H A P T E R 2

Linear Time Invariant Systems
Linear time invariant (LTI) systems are the backbone of much of the analysis of
communication systems, especially filtering operations. In this chapter we develop
the concept of an LTI filter in the time domain. This immediately leads to the Fou-
rier transform (FT). Starting with the continuous FT, we continue to the digital Fou-
rier transform (DFT), which is used on a computer. The concept of FT windows is
introduced here. Finally, we describe the all-important fast Fourier transform (FFT)
algorithm via a specific example.

2.1 LTI Systems

Consider a system described by a time function h(t). We observe h(t) by “kicking” it
with a unit impulse response δ(t), as shown in Figure 2.1. The function h(t) is then
called the unit impulse response of the system. A system is said to be time invariant
if the impulse is delayed by T, and the output is delayed by the same amount h(t −
T); that is, the system does not change in time. A time variant system could occur if
someone changed the value of some element of your system, such as a resistor or
capacitor. In fact, there are capacitors called varactors that can be controlled by an
input voltage, which could be any function of time.

Now let the input signal be a series of impulses, ak, separated by time T. Then
the input can be written as

( ) ( )x t a t kTk
k

= −∑ δ

Then the output becomes

( ) ( )y t a h etc t kTk
k

= −∑ .

Now take h(t) to be

( )hetc t t. = ≤ ≤

=

1 0 1

0 otherwise

and let the input x(t) be 10 unit height pulses, ak = 1, separated by T = 0.1 sec. Then,

by the above definitions, the value of y(t) at t = 1 is

13



( ) ( )y h t k
k

10
1

10

1 1 10= − =
=

∑ .

Repeat the calculation with x(t) now being 100 unit impulses separated by 0.01

sec. Then at t = 1 we have

( )y100 1 100=

Clearly as we continue this process y∞(1) becomes infinite. This is not a good
thing! However, if we modify the basic in-out relation to

( ) ( )

( )

y t T a h t kT

a x kT

k
k

k

= −

=

∑

then y(1) = 1 regardless of the spacing of the input impulses. Now we take the limit
that T → 0, and by the rules of calculus we have

( ) ( ) ( ) ( ) ( )y t h t x d h t x t= − =
−∞

∞

∫ τ τ τ *

where the * operator is commonly used as a shortcut notation for the full expression
that is called the convolution function. Now if

( ) ( ) ( )
( ) ( ) ( )

y t h t x t

y t h t x t

1 1

2 2

=

=

*

*

then by the basic integral definition we have

( ) ( ) ( ) ( )[ ]
( ) ( ) ( )

z t h t ax t bx t

z t ay t by t

= +

= +

* 1 2

1 2
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Figure 2.1 Linear system impulse response.



This result is the definition of a linear system. From a practical standpoint, in a
linear system, having two sine wave functions of different frequencies as an input,
only those frequencies will appear at the output.

Now what happens if we take y(t) and pass it through as second filter with

impulse response g(t). The result is

( ) ( ) ( ) ( ) ( )[ ] ( )z t y t g t x t h t g t= =* * *

Although the calculation procedure developed here is conceptually simple, it
has two major drawbacks: (1) although it is straightforward, the calculations are

tedious; and (2) there is the question of how to design an h(t) for some specific
purpose.

Enter the Fourier transform.

2.2 Fourier Transform (FT) Theory

The Fourier transform H(f) of a signal h(t) is given by the relation.

( ) ( )H f h t e dtjft= −

−∞

∞

∫ 2 π

where the output variable f is the signal frequency. This is the continuous version of
a Fourier series. The inverse transform is

( ) ( )h t X f e dfjft=
−∞

∞

∫ 2 π

We now develop one of the most important aspects of FT. Suppose that the

function H(f) in the above expression is the product of two other frequency func-

tions X(f), and Y(f). Then the expression for h(t) is

( ) ( ) ( )h t X f Y f e dfjft=
−∞

∞

∫ 2 π

But for some frequency functions X(f) and Y(f) we have

( ) ( )

( ) ( )

X f x e d

Y f Y e d

jf

jf

=

=

−

−∞

∞

−

−∞

∞

∫

∫

τ τ

τ τ

π τ

π τ

2

2 $ $

Substituting these expressions gives

2.2 Fourier Transform (FT) Theory 15



( ) ( ) ( ) ( )

( ) ( )

h t x y e

x y

j ft f f=

=

− −

−∞

∞

−∞

∞

−∞

∞

∫∫∫ τ τ τ τ

τ τ τ τ

π τ τ2 $
$

$ $

dfd d

d d ( )e jf t2 π τ τ− −

−∞

∞

−∞

∞

−∞

∞

∫∫∫










$
df

First evaluate the integral in the square brackets by noting the following FT
pairs:

( ) ( )
( )

h t t T

H f e jfT

= −

= −

δ
π2

With this relation the expression for h(t) reduces to

( ) ( ) ( ) ( )h t x y t= − −
−∞

∞

−∞

∞

∫∫ τ τ δ τ τ τ τ$ $ $d d

The integral with respect to τ is easy, owing to the definition of the delta func-
tion. The net result is

( ) ( ) ( ) ( ) ( )h t x t y d x t y t= − =
−∞

∞

∫ $ $ $ *τ τ τ

This is an important result. We have the same expression for h(t) previously
obtained. What this says is to calculate the output of an input function x(t) through a
filter h(t); we simply multiply the FT of each signal and perform the inverse FT. By
extension, if there are two filters, the output is the inverse FT of the individual ele-
ments:

( ) ( ) ( ) ( )z t H f G f X f e dtjft=
−∞

∞

∫ 2 π

This operation is shown in Figure 2.2. We now have a relatively simple method
of calculation, and, as we shall see shortly, the filters are readily defined in the fre-
quency domain.

16 Linear Time Invariant Systems

Figure 2.2 Linear system operation on two elements.



Some other useful features of the FT are that:

1. The FT is linear:

( ) ( )[ ] ( )[ ] ( )[ ]FT ax t by t aFT x t bFT y t+ = +

2. If the signal x(t) is real, then

( ) ( )X f X f− = *

where the * indicates complex conjugate. Thus it is only necessary to compute the
FT for the positive frequencies.

2.3 The Digital Fourier Transform

We now turn to how one simulates an FT on the computer. The founding expres-
sion has two problems: (1) it is continuous; and (2) the integral limits are ±∞. To this
end, we modify the FT equation to take these factors into account:

( ) ( )H k f t h n t e jkn f t

n

N

∆ ∆ ∆ ∆ ∆= −

=

−

∑ 2

0

1
π

We are evaluating the FT at frequencies that are integer multiples of ∆f, and we
have sampled the time function at fs = 1/∆t.

The following relation is basic to the DFT:

∆ ∆f t N= 1

from which we get the following important results:

∆ ∆f N t T= =1 1

(i.e., the frequency resolution is the inverse of the time length of the segment), and

F N F t f smax = = =∆ ∆1

This is a restatement of the Nyquist criteria.
The eventual choice of these parameters is based on the problem at hand.

Clearly 1/∆t = fs must be chosen to satisfy the Nyquist criteria for the signal under
consideration. Usually, the physics of the problem forces a choice of the frequency
resolution ∆F, from which the FFT size N is then calculated.

In standard notation the DFT and inverse DFT expressions become

( )

( )

H k f H h e

h n t h H e N

k n
jkn N

n

N

n k
jkn N

n

N

∆

∆

= =

= =

−

=

−

=

−

∑

∑

2

0

1

2

0

1

π

π

2.3 The Digital Fourier Transform 17



It is very instructive to compute the DFT of a sine wave. For convenience we
shall use the complex form

( )s t e jft= 2 π

Now we let t = k∆t, f = m∆ (where m is not necessarily an integer) and define N
as before to obtain

( )H en
jk m n N

k

N

= −

=

−

∑ 2

0

1
π

It turns out that this expression can be evaluated in closed form since it is of the
geometric progression form

[ ] [ ]
( )

H x x x

x e

n
k N

k

N

j m n N

= = − −

=
=

−

−

∑ 1 1
0

1

2 π

With a little effort we can calculate the magnitude square of Hn. First we substi-
tute the expression for x to obtain

( ) ( )[ ]
[ ]

H e e

e e e e e

n
jp N N jp N

jp jp N jp jp jp N

= −





−

= −− −

1 12 2π π

π π π π π[ ]−

= −

−e

p m n

jp Nπ

Finally, using the basic expression for the sine function

( ) ( )sin x e e jjx jx= − − 2

we arrive at the final expression

[ ] ( )[ ] ( )[ ][ ]H m n m nn

2 2
= − −sin sinπ π Ν

Recall that we evaluate Hn only at frequencies that are integer multiples of ∆f,
regardless of what f is. So let us start with m = any integer < N. Then from the above
equation,

[ ]H N n mn

2 2

0

= =

= otherwise

This result is plotted in Figure 2.3 with m =32 and a resolution ∆f = 1 Hz. We
have the intuitive result that a pure sine wave can exist only at one frequency.

Now let m = 32.5. That is, the frequency exactly splits two DFT bin frequencies.
The result is shown in Figure 2.4. Notice the major difference. The energy splatters
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all over the frequency domain (it has to go somewhere). Further, the decrease in
power as we move away from 32.5 Hz, falls off very slowly as 1/f 2.

There is another way to arrive at the above results, which may be instructive.
The FT is performed only on a segment of the actual signal during a T-second inter-
val. The resulting time domain signal is thus comprised of a sum of sine and cosine
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waves of frequency that are a multiple of 1/T. If we consider that we started with a
continuous signal over the interval [0, T], we may regard the FFT as the result of tak-
ing the continuous FT of this signal, and sample it at frequencies k/T. To this end we
write the FT of a sine wave of frequency f0 existing over [0, T] (only the positive part
of the magnitude of the FT will be used for clarity without loss of generality),

( ) ( ){ } ( )[ ]H f f f T f f T= − −sin π π0 0

As will be seen throughout this text, the general mathematical expression
sin(x)/x appears constantly. It is common then to give this relation a special function
name:

( ) ( )sin sinc x x x≡

Figure 2.5 shows what happens if we sample this function at k/T when f0 is itself
some integer multiple of 1/T. What we see is the continuous sinc(x) spectra being
samples exactly at the nulls of these spectra, with the one exception where x is equal
to zero. Compare this figure to Figure 2.3.

Now repeat the above process when the carrier frequency fo alf way (splits) the
FFT sampling; then the picture of Figure 2.6 results. Now we see that the samples
are on the main lobes of the sinc(x). Compare with Figure 2.4.

To see why bin splitting can be troublesome, consider a signal with two sine
waves of the form

( ) ( ) ( )s t t t= +. sin sin .1 2 9 2 1125π π
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Figure 2.5 The PSD of the sine wave that is on a frequency bin. The samples of the continuous spectra are
at the zeros of the sinc(x)/x function.



and perform a DFT on this signal with ∆f = 0.5. The 11.25-Hz signal exactly splits
two FFT bins, while the 9-Hz signal is on a bin. The result is shown in Figure 2.7.
Notice that the splatter of the stronger 11.25-Hz signal spectra nearly obscures the
10-Hz DFT bin of the weaker signal.

2.4 DFT Windows

Let us return to the transformation from the FT to the DFT. In particular, we have
to change the limits of integration from +∞ to [ T/2, T/2]. One way of viewing this
action is shown in Figure 2.8. This can be interpreted as viewing the entire signal
through a window 1 second wide.

The windowed function sw(t) is then related to the original signal s(t) and the
window function w(t) by

( ) ( ) ( )s t s t w tw =

Now take the FT of the above, giving

( ) ( ) ( )s f S f W fw = *

Note the reversal of the convolution in the time and frequency domains from
the original development of the FT. The window function can be thought of a fre-
quency domain filter. What are the implications of this if the input were a pure sine
wave of complex frequency +fc? The result is
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( )

( ) ( )

w t T t T

W f w t e dt ejft

= − ≤ ≤

= =−

1 2 2

2

(rectangle)

= 0 otherwise

π

[ ]
( )
( ) ( )

( )

−

−−∞

∞

−

∫∫
=

=

= −

=

2

2

2

2

π

π

π

δ

jft

T

T

f t

c

w

dt

fT

s t e

S f f f

S f

c

sin

si

c

( )[ ]nc π f f Tc−

So the frequency spectrum of a rectangular windowed pure sine wave has the
sinc function as its spectra. As noted before, this function rolls off in frequency very
slowly (i.e., it splatters). This result is for a continuous spectrum.

There is extensive literature on windows. For the basic issues of windowing,
consider three windows, all defined over −T/2 < t < T/2:

1. Rectangular:

( )
( ) ( )[ ]

p t

W f fT f

=

=

1
2 2sin π π

2. Triangular (Bartlett):

( )
( ) ( ) ( )[ ]

p t t T

W f fT fT

= −

=

1

2 4
sin π π

3. Hanning:

( ) ( )[ ]p t t T= +. cos5 1 π

In the above we normalized all windows to unity amplitude at f = 0. Figure 2.9
shows a comparison of the three windows. We observe that as the spectral roll-off
increases from (a) to (c), the width of the main lobe increases as well. This is a gen-
eral result.

It is also instructive to compare the value of each PSD at the maximum of the
first side lobe. Table 2.1 compares this value with the spreading of the main lobe for
all three windows.

Now we can return to the issue presented in Figure 2.7. In Figure 2.10 we repeat
the calculation only using an FFT window. Now the smaller signal is clearly visable,
and the strong signal, even though on an FFT bin, now shows the spreading of the
spectral width of the sine wave at 9 Hz.

Another use of windows relates to accurate measurement of the PSD of a modu-
lated signal with steep frequency roll-off. A good example is the GMSK modulation
of the Global System for Mobile Communications (GSM) wireless system. Figure
2.11 shows a block diagram of this modulation.
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Table 2.1 Comparison of Three
Windows

Height of
First Side
Lobe dB
down from
f 0

Width of
Spectral
Peak

Rectangular 13.2 1

Triangular 26.4 1.2

Hanning 42.0 1.4
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Figure 2.10 PSD of a weak signal near a strong signal. The windowing now cuts down the strong signal
splatter making the smaller signal visible.



Figure 2.12 shows the PSD of this GMSK signal with and without the use of the
window. Note that with the window, the skirts properly fall off within the pass
band as they should.

2.5 The Fast Fourier Transform

The FFT algorithm has provided an enormous boost to spectral analysis. The desire
is to make the DFT length N as large as possible. This decreases the resolution band-
width ∆f (for a fixed sample rate). When detecting a signal and noise, the noise
power in a FFT bin is proportional to ∆f. This increases the detection sensitivity as
N becomes large, and correspondingly ∆f becomes small.

The literature is complete with many general derivations of the FFT algorithm.
Terms such as “decimation in time,” “decimation in frequency,” and “butterflies”
are common. Our approach is to develop the basic idea of the algorithm by starting
with an N = 4 DFT, and proceeding from there. Written out, the N = 4 DFT looks
like the following:

H h W h W h W h W

H h W h W h W h W
N N N N

N N N

0 0
0

1
0

2
0

3
0

1 0
0

1
1

2
2

3

= + + +

= + + + N

N N N N

N N N

H h W h W h W h W

H h W h W h W h

3

2 0
0

1
2

2
4

3
6

3 0
0

1
3

2
6

= + + +

= + + + 3
9WN

where

W eN
k e jk N= − π
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Figure 2.11 Baseband GMSK signal generation. The Gaussian filter is used to severely compress
the occupied bandwidth of the signal so it does not splatter into adjacent channels.



There are N = 4 rows, and each row has N multiplications and N − 1 additions.
For large N, the number of operations, M is

M N= 2 2

This is not a good result. Doubling N results in a four-fold increase in the com-
putational load. But let us examine the above a little closer. In particular, note the
following:

W W j W W j

W W W W W W j
4
0

4
1

4
2

4
3

4
4

4
6

4
4

4
2

4
9

4
1

1 1

1 1

= = − = − =

= = = − = = −

Substituting these results into the basic equations gives

H h h h h

H h jh h jh

H h h h h

H h

0 0 1 2 3

1 0 1 2 3

2 0 1 2 3

3 0

= + + +
= − − +
= − + −
= + jh h jh1 2 3− −

now if we define

U h h

V h h
±

±

= ±
= ±

0 2

1 3

we arrive at a very simple result
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H U V

H U jV

H U V

H U jV

0

1

2

3

= +
= −
= −
= +

+ +

− −

+ +

− −

As can be seen, the computational load has been greatly reduced. A general
count of the operations using the FFT is

M N N= 2 2log

This is an enormous savings as N becomes large and has made the FFT algo-
rithm the workhorse of the signal processing. As computers have become faster, a
common PC can easily do 1 million point FFT in a second or so.

As an aside, we note that the FFT algorithm has been applied to antenna theory.
In particular, a Butler matrix feeding n elements will produce n separated beams in
an economical way.

2.6 Conclusion

In this chapter we started out with the concept of an LTI system. We showed that
the output was the convolution of the input with the impulse response of the system.
The continuous Fourier transform was introduced as a mathematical tool that
greatly simplifies the calculations, and allows for a convenient design method for
developing transfer functions (filters) that serve a desired purpose. Next we devel-
oped the DFT, since the continuous FT does not exist in reality, since the limits of
integration on the time variable is ±∞. The concept of an FFT window was intro-
duced and explained as a means of controlling what is generally termed bin splatter,
which can hide a small signal. Finally, we developed the FFT algorithm, which revo-
lutionized the use of Fourier theory on computers.
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C H A P T E R 3

Sampling
The single most important concept when simulating communication systems on a
computer is that there is no such concept as “continuous.” All variables such as
time, amplitude, and frequency are stored as numbers in the computer with some
sort of quantization. To see why this is true and necessary, consider the following
question: How many points are there on a time line segment in the range 0 ≤ t ≤ 1
seconds? The answer, of course, is infinite. One of the strange things in mathematics
is that the number of points in the range 0 ≤ t ≤ 2 seconds is the same as for the range
0 ≤ t ≤ 1 seconds!

3.1 The Sampling Operation

Given that we must quantize all variables, let us start with time. Time is the inde-
pendent variable that drives all system simulations. The fundamental question is:
What is the smallest time step T that is needed? Usually one specifies sample rate fs =
1/T in samples/second. If we choose fs too large, the number of time steps needed to
complete the simulation will be very long, slowing the execution time. If we take fs

too small, then the effects of aliasing (to be described below) will seriously affect the
simulation output. The answer to this question is the Nyquist Sampling Theorem.
The reader is strongly urged to understand this theorem before embarking on a sim-
ulation.

Consider any continuous time function r(t). The sampling operation essentially
looks at r(t) only at time t = kT, with k an integer. To represent this mathematically,
we define a sampling function s(t), which has the properties: s(t) = 1 for t = kT, and
s(t) = 0 otherwise. Now we obtain the sampled function rs(t) = s(t) · r(t). Figure
3.1(a–d) shows this operation with T = 1 sec.

The sampling function can be written in the form

( ) ( )s t t kT
k

= −
=−∞

∞

∑ δ

where δ(x) is known as the unit impulse or delta function defined by

( )

( ) ( ) ( )

δ

δ

x x

h t t a dt h a

= =

=

− =
−∞

∞

∫

1 0

0 otherwise
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where h(t) is any function of t. The true definition of the delta function is the integral
relation, while the unit definition is a useful concept.

The expression for the sampled function is now

( ) ( ) ( )r t r t t kTs = ⋅ −
=−∞

∞

∑ δ
κ

The above is nice, but what implications does it have to the simulation issue? To
answer this question we must go to the frequency domain. Remember from Chapter
2 on Fourier analysis, we showed that multiplication in one domain is equivalent to
convolution in the other domain. To this end we first need the Fourier transform of
the sampling function s(t):
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the sampled function rs(t).
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Even in this form the desired answer is not obvious. To proceed we observe that
the sampling function s(t) is periodic with period T; that is, s(t − kT) = s(t) for any
integer k. In this case, s(t) can be written as a Fourier series:

( ) ( ) ( )[ ]
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k k
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the expressions for ak and bk become: a0 = 1, ak = 2, and bk = 0 for all k. The sampling
function now reduces to
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That is, the sampling function can be considered as an infinite summation of
cosine waves, or local oscillators, of frequency k/T.

Now, by remembering the basic relation

( )e e xjx jx+ =− 2 cos

the frequency spectra of the sampling function can be rewritten as
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Thus the Fourier transformation of a sequence of delta functions in the time
domain produces a similar sequence of delta functions in the frequency domain.
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Now back to the problem at hand, we can write the spectrum Rs(f) of the sam-
pled time function rs(t) in terms of the spectra of the sampling function S(f) and the
original signal R(f), as follows :

( ) ( ) ( )

( ) ( )

( ) ( )
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R f S f R f
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∑

3.2 The Nyquist Sampling Theorem

The last expression above essentially says that the frequency spectra of the sampled
function is comprised of the frequency function of the sampled signal r(t) shifted
onto each of the frequency lines f = k/T. Figure 3.2(a) shows a signal with a
one-sided wide spectrum B = 2 Hz, and Figure 3.2(b) shows the resulting spectrum
for a signal with a sample rate of 10 Hz. Note that Figure 3.2(b) shows replicas of
the original spectrum of Figure 3.2(a), each placed on a multiple of the 10-Hz sam-
ple rate.

Remember that we just noticed that the sampling function can be viewed as an
infinite number of oscillators separated by f = k/T. Thus the sampling function
“mixes” the input function onto each of these carriers, giving the same picture in the
frequency domain.

Now let us take a closer look at Figure 3.2(b). We see that since B = 2 Hz < 10
Hz, the individual spectra are fully separated from one another. Now resample the
original signal at a 4-Hz rate. The resulting spectra is shown in Figure 3.2(c).

In Figure 3.2(c) we now see that the individual spectra are just butting up to one
another. Clearly if we further reduce the sample rate, these spectra will start to
merge into one another. This collision phenomenon is called aliasing, and it is a very
important concept for understanding how to avoid aliasing problems in your simu-
lation

To avoid aliasing then, we must not violate the well-known Nyquist sampling
criteria:

B fs< 2

where B is the one-sided bandwidth of the signal being sampled.
This result is very nice, but it assumes that the sampled signal has no spectral

content for frequencies f f≥ 2 2/ . In the real world, however, there is no such thing
as a band limited signal! An absolutely band limited signal can only be the Fourier
transform of a signal that is infinite in time extent. So unless you had the foresight
and ability to start your simulation at the dawn of the ages, there is always some
aliasing. Ok, what’s next then? There is no universal answer to this question. The
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solution is to look at the spectra of the signal, which will usually decrease as the fre-
quency increases, and pick some sampling rate where you can convince yourself
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(and your boss!) that the small amount of aliasing does not harm your simulation.
One such choice might be where the spectra at the alias frequency is, say, 48 dB
down from the main center value. But other choices are possible.
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Let us take a closer look at aliasing, with the signal being a cosine wave of some
frequency f, which has been sampled at a rate fs = 1/T. The bandwidth of the cosine
wave is 2f, from −f to f. Now consider a 10-Hz cosine wave sampled at 128 sam-
ples/sec (Hz). The time domain samples can be written as

( ) ( )s kT k T= =cos 2 10 128 1 128π

Figure 3.3(a, b) shows the time domain and frequency spectra of this signal.
There is no problem at all.

Now increase the frequency to 63 Hz as shown in Figure 3.4 (a, b). There is still
no problem.
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Now, try one more time with f = 65 Hz, as shown in Figure 3.5(a, b).
Compare the time plot and spectra here [Figure 3.5(a, b)] with the 63-Hz case

[Figure 3.4(a, b)]. They are the same. What happened is that the 65-Hz signal
“folded over” (aliased) around the Fs /2 value 64 Hz back to 63 Hz. Mathematically
this can be written as follows:

( ) [ ]
( )[ ]

[ ]

s k k

k

k k

=

= −

= −

=

cos

cos

cos

cos

2 65 128

2 128 63 128

2 2 63 128

π

π

π π

[ ]2 63 128πk

3.2 The Nyquist Sampling Theorem 37

A
m

p
lit

ud
e

Time in seconds

1

500e-3

−500e-3

−1

0

200e-3 400e-3 600e-3 800e-3 1 1.2 1.4 1.6 1.80

200e-3 400e-3 600e-3 800e-3 1 1.2

(a)

(b)

1.4 1.6 1.80

0 10 20 30 40 50 60

0

−100

−200

−300

−400

−500

Po
w

er
dB

m

Frequency (Hz)
0 10 20 30 40 50 60

Figure 3.5 (a) 65-Hz sine wave sampled at 128 Hz; and (b) FFT magnitude of 65-Hz signal.



which is identical to the result for 63 Hz. So as we increase the frequency further, the
spectral line will move back down to 0 Hz for an input of 128 Hz, and start moving
back up, and so on. One point to emphasize is that once the aliasing has occurred,
there is no undoing it.

3.3 Recovering the Signal from Its Samples

We now consider the inverse sampling operation. Given the sampled function rs(t),
how can we reconstruct the original signal? From Figure 3.1(d), the issue is essen-
tially how we connect the dots. This procedure is called interpolation, and there are
many possibilities. The first and simplest way is simply to hold the previous sample
until the next sample data point occurs, and hold that one until the next, and so
forth. Figure 3.6 shows this simple operation. It is interesting to compare the origi-
nal signal spectra shown in Figure 3.7 with that of the recovered signal spectra as
shown in Figure 3.8. We see that the two agree at the low frequencies, but the inter-
polated spectra show a harmonic of the 10-Hz sample rate Fs. We could eliminate,
or at least reduce this harmonic by following the hold operation with an appropriate
low pass filter. A second idea is to linear interpolate; that is, connect the dots with
straight lines. The result of this operation is shown in Figure 3.9, with the associated
spectra shown in Figure 3.10. Note in Figure 3.10, the harmonic power is greatly
reduced. We can continue this process by fitting parabolas over three point and so
on. In textbooks on mathematics one can find a whole family of such functions
known as Lagrange interpolators.

But the issue remains. Is there an ideal interpolation function that exactly recre-
ates the signal? The answer is yes. The spectrum of the sampled function in Figure
3.2(b) shows the original spectra, Figure 3.2(a), repeated at multiples of the sample
rate. Suppose that we multiply this spectrum Rs(f) by the frequency domain function
windowing:

( )H f f f fs s= − ≤ ≤

=

1 2 2

0 otherwise
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The resulting spectrum, R(f) is the original signal spectra and hence the Fourier
transform of R(f) is the original signal. The result is
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where T fs= 1 / and
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is the theoretically optimum interpolation function in that it is the only function that
exactly recovers the original signal. Figure 3.11 shows this reconstruction for a por-
tion of a complete signal. Notice that the sinc function has the property
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( )[ ]sin c+ − = ≠G B t kT k0 0

Thus the sinc function does not interfere with the other data points at these
times.

Now that we have learned that the sinc function is the theoretically optimum
interpolation function, realize that it does not exist in the real world. This is due to
the fact that it is derived from a perfectly band limited function, which implies as
before: that the function exists for all time. In a simulation, this function must be
truncated to some finite time mT. In fact, for small enough m, the truncated spec-
trum may perform worse than the other mentioned (suboptimum) interpolation
functions that require far less processing.

3.4 Band-Pass Sampling

We just showed from the Nyquist theorem that the sample rate must be at least B/2.
Now consider the following situation. We want to simulate an Army tactical radio.
This radio has a bandwidth of 25 kHz and is transmitted on a 100-MHz carrier. In
order to avoid aliasing the 100-MHz carrier, a sample rate of 200 MHz (−100 MHz
to +100 MHz) would be required. This is a huge overkill since the information
bandwidth of 25 KHz only requires a sample rate of 50 KHz, a factor of 3,200 less!
One solution to this problem is to use baseband simulation techniques as described
in Chapter 4. The other solution is the so-called band-pass sampling operation.

Recall that we also showed that the sampling operation is equivalent to mixing
the signal with a series of oscillators whose frequencies are spaced by the sample
rate fs. In that discussion we started with a baseband signal with the resulting signal
spectra being replicas of the baseband spectra translated up and down in frequency
accordingly. The rules, however, do not change if the signal is a band-pass of some
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bandwidth B on a carrier f0. Thus, if we sample this radio signal at fs, the resulting
translated sampled spectra fk are at

f MHz kfk s= ±100

and

f MHz kfk s= − ±100

Yet with all of these ups and downs in frequency, we only see that portion of the
spectra in the region

− ≤ ≤f f f s2 2 2

By way of a specific example, Figure 3.12(a–c) shows the specifics for a B = 2-Hz
signal on a 100-kHz carrier sampled at 36 MHz.

Figure 3.12(a) shows the pass band spectrum of the signal at the +/−100-kHz
frequencies. The labels U0 and L0 refer to the corresponding spectral locations.

Figure 3.12(b) shows the resulting spectra after sampling the signal at 36 MHz.
As stated, the upper signal at U0 = 100 kHZ is translated up to U-1 at

100 + 36 = 136 kHz, and is translated down to U-1 at 100 − 36 = 72 kHz,
U-2 to 100 − 72 = 36 kHz, and so on. A similar procedure applies to the original

L0 at −100 kHz. The thing to observe is that none of these flying spectra crash into
each other. This statement is not generally true with an arbitrary carrier frequency,
signal bandwidth, and sample rate.

Figure 3.12(c) shows the final spectrum limited to +/−36 kHz. Not that the U-3
term has been translated down to −7.5 kHz while the L-3 term is at +7.5 kHz. In this
case the spectrum is inverted

So far, we have ignored the signal bandwidth B. In the current example, if B/2 <
5 MHz, then there would be no further issues with these flying spectra crashing into
each other, or aliasing. It is clear that the best situation is when the sampled spectra
centers up at fs /4. This situation is commonly employed in actual digital hardware.
First, this operation maximizes the bandwidth available to fs/2. That is, the signal
exactly fits into the sampled frequency space. Second, additional signal down con-
version is greatly simplified. In Chapter 7 on demodulation we show that normally
the first step is to I, Q down convert the signal from its bandpass location to base-
band. The operation entails multiplying the signal with the sine and cosine of the
location of the carrier frequency. But look what happens if the carrier is at fs /4 and
we then down convert with the same frequency. The resulting down conversion sig-
nals in this case are

( ) ( )[ ]
( ) ( )[ ]

I k k f f

Q k k f f

s s

s s

= = ±

= = ±

cos ,

sin ,

2 4 0 1

2 4 0 1

π

π

What a happy result! The down conversion process entails multiplying by [0, 1,
–1]. There is no need for generating the trigonometric functions and employing
time-consuming multiplications.
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For a given carrier frequency f0, what sample rates will result in an fs /4 system?
The basic relation is

f kf fs s0 4− =

or

[ ]f f ks = +4 4 10

Table 3.1 evaluates this expression for the current example with f0 = 80 MHz.
The particular value of k used depends, of course, on the bandwidth B of the sig-

nal to be processed. One word of caution needs to be mentioned here. The signal
must be filtered to the bandwidth B before the sampling operation. While the signal
itself is not affected by this operation, the system wideband noise floor is. Without
this filter, the higher frequency noise components will fold back or alias, seriously
affecting the simulation performance.

Finally, reconsider sampling the 80-MHz signal, only this time with a 30-MHz
sample rate. Then the +80-MHz signal will show up at 80 − 3 30 = −10 MHz, while
the signal at −80 MHz appears at +10 MHz. This phenomenon is called spectrum
inversion. While no information is lost, some aspects of the demodulated signal such
as phase or frequency may be inverted as well, requiring additional processing steps
to recover the information.

3.5 Conclusion

In this chapter we laid the foundation for sampling the time function used to drive
the simulation. We showed that the sampling operation is equivalent to mixing the
signal with oscillators with frequencies at multiples of the sample rate. These opera-
tions lead us to the concept of aliasing and the all-important Nyquist sampling theo-
rem. We also developed the optimum interpolation function for recovering the
original signal from its sampled version. Finally, the useful concept of band-pass
sampling was introduced.
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Table 3.1 Sampling Values for an fs/4 System
at 80 MHz

k fs MHz fs/4 MHz
Max. bandwidth
B MHz

0 320 80 160

1 64 16 32

2 35.55 8.89 17.78

3 24.62 6.15 12.31
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C H A P T E R 4

Filters
In this chapter we take up how to implement filters in a simulation. We start out by
developing the theories of the continuous Laplace or s transform, and its digital
equivalent, the z transform. Then we develop the concepts for finite impulse
response (FIR) filters and infinite impulse response (IIR) filters. Next we detail how
one transforms from the s to z domain. Finally we take up some practical issues
about running IIR filters in the z domain.

4.1 General Considerations

For a filter with a complex frequency domain transfer function H(f), we can write it
in the following useful form:

( ) ( ) ( )H f A f e j f= ϕ

A(f) is called the amplitude response, and ϕ(f) is called the phase response. Both
of these functions are real valued. In Chapter 2 we noted that for a real-time func-
tion, the FT must have the symmetry

( ) ( )H f H f− = *

This in turn implies that A(−f) = A(f), and ϕ(−f) = −ϕ(f).
Now consider the response of such a filter to a pure cosine wave input frequency

f0. From basic FT, the output time response of the filter y(t) is
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The result emphasized the meaning of the gain, and phase (delay) of a filter.
Now consider a somewhat more complicated case where the input x(t) is two cosine
waves with slightly different frequencies f0±∆f.

( ) ( ) ( )
( ) ( )

x t f t ft f t ft

ft f t

= + + −

=

cos cos

cos cos

2 2 2 2

2 2 2
0 0

0

π π π π

π π
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∆
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The result is a low frequency AM modulation of the carrier frequency f0 by the
cosine of frequency ∆f. More generally it represents the common case of a narrow
bandwidth signal modulated on a carrier. The modulating signal is called the enve-
lope.

Now, the output response, z(t), to this input is just the sum of the individual out-
puts of the form above:

( ) ( ) ( ) ( )[ ]
( ) ( )

z t A f f f f t f f

A f f f f t f

= + + + +

+ − − + −

0 0 0

0 0 0

2

2

∆ ∆ ∆

∆ ∆

cos

cos

π ϕ

π ϕ( )[ ]∆f

First we assume that ∆f << signal bandwidth, which allows us to write

( ) ( )A f f A f0 0± =∆

Furthermore, we can expand the phase terms as follows:

( ) ( ) ( )ϕ ϕ ϕf f f f f0 0 0 2± = ± ′∆ ∆

After making these substitutions, we expand the cosine terms above and gather
terms to yield

( ) ( ) ( )( )[ ] ( )[ ]
( ) ( )[ ]

z t A f f t f f t f

A f f t g

= + ′ +

= −

2 2 2 2

2 2

0 0 0 0

0

cos cos

cos

π ϕ π π ϕ

π τ

∆

∆ ( )[ ]cos 2 0 0π ϕf t f+

where we have the standard definition of the filter group delay

[ ]τ ϕ πg f
d dg= −

0
2

Comparing this with the input x(t), we see that the action of the filter is to shift
the carrier phase term, while the envelope is shifted in time by the group delay.

Figures 4.1 and 4.2 shows this result with ∆f = 2 Hz, and f0 = 100 Hz. The filter is
a three-pole Butterworth with 3-dB points at 95 and 105 Hz.

Figures 4.3 and 4.4 show these results for the Butterworth filter used to create
Figures 4.1 and 4.2. The phase delay as shown in Figure 4.3 is 0 at 100 Hz. The
group delay at 100 kHz shown in Figure 4.4 is about 0.056 sec. This is very close to
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the group delay as measured (to the best of our ability) in Figures 4.1 and 4.2 (0.312
− 0.25 = 0.062 sec), which can be seen by examination of the two signals.

4.2 The Laplace Transform

In Chapter 2 we developed the theory of the FT as an aid to implementing an LTI
system. To proceed with our development, a second similar (but not identical) trans-
form is required.

The Laplace transform (LT) is defined by the relations

( ) ( )

( ) ( )

H s h t e dt

h s H s e ds

st

st

c j

c j

=

=

−
∞

− ∞

+ ∞

∫

∫
0

Note the similarity between the LT and the FT. There are two major differences.
First, the lower limit on the time to s integral is 0, not −∞. The reverse transform
integral is on a contour in the complex plane. This means that the LT is realizable in
the real world. We can turn it on, so to speak, at any time we wish to call t = 0. It is
instructive to emphasize this point by considering the LT of the derivative of a func-
tion:

( ) ( ) ( ) ( )H s dh t dt sH s hd = = − +
∞

∫
0

0

Where h+(0) is the initial condition of h(t) taken at zero from the + side. Appen-
dix A gives a short table of Laplace transforms.

What this tells us is that the LT can incorporate initial conditions of a system
where the FT cannot. More importantly, the impulse response of a signal derived
from an LT includes the initial transient of the system as well as the steady state
response. To illustrate this in detail, consider a differential equation of the form

( ) ( ) ( )dy t dt y t t+ = sin ω

Taking the LT of both sides gives

( ) ( )[ ] ( )( )
( )[ ] ( )[ ] ( )( )

( ) ( ) ( )

LT dy t dt y t LT t

LT dy t dt LT y t LT t

sH s h H s

+ =

+ =

− + =+

sin
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ω

ω

ω0 ( )
( ) ( ) ( ) ( )

( ) ( ) ( )[ ] ( )

( )[ ] ( )

s

s H s h s

H s h s s

s s

2 2

2 2

2 2

2

1 0

0 1

1 1 1

+

+ = + +

= + + +

= + + − −

+

+

ω

ω ω

ω ω

ω ω ( ) ( )[ ]1 2 2s + ω
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The time domain result y(t) is now

( ) ( ) ( )[ ] ( )y t e t tt= + − +−ω ω ω ω ωsin cos 1 2

where we have taken h+(0) = 0. It is easy to verify that y(o) = 0 as required.
The output y(t) consists of two parts: an exponentially dying transient and a

steady state sinusoidal term (which is an amplitude and phase shifted version of the
input sine wave). This result is shown in Figure 4.5.

Note that as time goes to infinity, the steady state of y(t) is the exact result that
would have been obtained by using the FT.

A second difference is that the FT transform variable, f, is a real number, with
the complex number j explicitly shown. In the LT, s is considered to be a complex
number of the form

s j j f= + = +σ ω σ π2

From this we can identify the imaginary axis of the s domain transform with the
frequency domain parameter of the FT.

The inverse LT is

( ) ( )h t H s e dsst

C

= ∫

where the integration is along the imaginary axis in the s plane. Tables of LTs can be
easily found that contain nearly every useful pair that comes into normal analysis.

4.3 Poles, Zeros, and Stability

The LT of a simple exponential s(t) = eat (with no restriction on a) is
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( ) ( )H s s a= −1

A pole in the transform function is where the denominator goes to zero, or
equivalently where H(s) goes to infinity. In this case the pole is at s = a in the Laplace
domain plane. If a is, in fact, positive, the pole is in the right half of the plane σ > 0.
The exponential in time is then increasing without limit, which is known as an
unstable signal. If a is negative, the pole is in the left half plane. The exponent is
decaying in time, which is a stable condition. The precise case σ = 0 is called neutral
stability. From this discussion we arrive at the standard definition of a stable system
as one where all of the poles are in the left half plane, including the axis.

The opposite of a pole is a zero. This is a value of s such that H(s) = 0. In the
function

( )H s s= + 2

the pole is at s = −2 + 0j in the Laplace plane.
In the general linear system, the Laplace function is of the form

( ) ( )
( )

( )
( )

H s
N s

D s

s z

s p

kk

n

kk

m
= =

−

−
=

=

∏
∏

1

1

That is a ratio of two polynomials. The superscripts n and m in the formula rep-
resent the number of poles and zeros describing the filter. For example, the filter

( ) ( ) ( )H s s s s= + + +2 2 22

has one zero at s = −2, and two poles at s = −1± j (for a real-time function, the poles
must occur in complex conjugate pairs). Figure 4.6 shows the standard graphic used
to describe the filter 0 = zero; x pole.
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4.4 The Two Worlds of a Filter

4.4.1 Infinite Impulse Response filters

Consider the simple one pole LT pair

( ) ( ) ( )H s s a y t e at= + ↔ = −1

The time exponential is the impulse response of the filter. Note that y(t) never
reaches zero. Admittedly, it becomes so small that it may be considered zero for all
practical purpose, but in the strict mathematical sense it never gets there. What we
see in general is that any filter that has poles will also have a time impulse response
that never goes to zero. This is the basis of an IIR filter. Most of the common filters
such as Butterworth, Bessel, Elliptic, Chebychev, and the like are IIR filters. They
can be implemented on the bench (analog world) via suitable lumped constant
inductor resistor capacitor (LRC) filter as shown in Figure 4.7.

This is a simple circuit with the transfer function

( ) ( ) ( ) ( )H s V s V s LCs RCsout in= = + +1 12

where the output voltage is taken across the capacitor.
If we desire a two pole Butterworth filter, we require: LC = 1 and RC = 1.414.

One solution is to take L = 1/1.414 h, R = 1 ohm, and C = 1.414 farad, and then the
above reduces to

( ) ( ) ( ) ( )H s V s V s s sout in= = + +1 1414 12 .

This is the transfer function of a two pole Butterworth filter with a 1 ra/sec 3-dB
point. Other standard filters have similar, but more complicated circuits.

The most common IIR filters are:

• Butterworth;
• Bessel;
• Chebychev (I and II);
• Elliptic;
• Gaussian.
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4.4.2 Finite Impulse Response Filters

An FIR filter has an impulse response that is confined to some specific time extent.
The common structure is shown in Figure 4.8.

The time transfer function of this filter is simply

( ) ( )y t c x t kk
k

= −
=

∑ τ
1

4

and the LT of the filter is simply

( )H s c ek
ks

k

= −

=
∑ τ

1

4

If we send an impulse into this filter, the output will be the same impulse,
weighted by the coefficients ck, appearing at multiples of the delay τ. Once the
impulse passes the last delay stage there is no more output, hence the title FIR filter.

Surface acoustic wave (SAW) devices are a classic example of an FIR filter oper-
ating in the analog or continuous domain. These filters use overlapping electrodes
on a piezoelectric substrate to implement the desired band-pass response.

4.5 The z Transform

Now that we have gone through the development of the Laplace and Fourier trans-
forms as they apply to the representation of filters, the reader is again reminded that
such representations do not exist on a computer. What we need is the digital equiva-
lent of the FT. This is called the z transform.

The z transform may be considered as the sampled or digital equivalent of the
continuous LT. We start with a continuous signal x(t) and sample it at a rate 1/T. A
typical result was shown in Figure 3.1(d). The mathematical expression is

( ) ( ) ( )x t x kT t kTs
k

= −∑ δ

Now take the LT of the above to get
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−∑

If we denote z = esT, then the z transform X(z) is defined as

( )X z x zk
k

k

= −∑
As an example consider the exponential e–at. Then we have

( ) ( )
( )

X z e e z

e z

kaT
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aT k

k
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Z
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= =
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−

=

∞
− −

=

∞

− −

−

∑ ∑
0

1

0

11 1

Now define a z domain filter with impulse response H(z), which has the general
form

( )H z c zk
k

k

= −

=

∞

∑
0

What is the output of this filter Y(z) for an input function X(z)? In Chapter 2 we
derived the time domain result for the input output of a continuous filter by actually
starting with a discrete sampled signal and then letting the sample rate go to infinity.
The summation then went over to an integral. But here we do not need to go that
far. Following the procedure described in Chapter 2, we immediately have

( ) ( ) ( )Y z H z X z= *

4.6 From s to z

The Laplace variable s, as mentioned, is complex. Thus, the z variable is complex as
well. What we have is a mapping from the s to z complex planes. A little analysis
shows that the imaginary jσ axis in the s domain maps to the unit circle in the z
domain. Furthermore the left hand side (σ < 0) of the Laplace domain is mapped
into the unit circle in the z domain.

The problem that we face when simulating any transfer function (filter) that is
defined in the s domain is how to convert the design to the z domain that is the basis
for the implementation algorithm? In other words, we need to define some function
of z and let s = f(z). By definition z = esT, then a logical choice would be s = fsln(z). But
we cannot implement ln(z) in any reasonable manner so another f(z) must be found.
There is no unique solution here. All we can do is set up some criteria for f(z) which
takes an H(s) into an H(z) which is representative of the original H(s).

There is no guarantee that an arbitrary f(z) will work. One mandatory require-
ment is that f(z) maps the entire left hand side of the s plane into the unit circle of the
z plane. Without this, the transformed filter may be unstable. Consider an example
using a simple derivative
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( )[ ] ( )LT dy t dt sY s=

Now the derivative dy(t)/dt can be numerically approximated by

( ) ( ) ( )[ ]dy t dt y t y t dtk k≅ − −1

Now apply the z transform to the RHS of the above to obtain

[ ] ( )[ ]ZT y y dt Y z z fk k s− = −−
−

1
11

Combining results, we obtain the desired transform

[ ]x f zs↔ − −1 1

It is easy to show that this relation maps the left half plane (LHP) of s to a circle
of radius 1/2, centered at z = 1/2, as shown in Figure 4.9.

Thus the stability criterion is satisfied. However, further investigation shows
that the resulting z domain filter does not preserve the properties of the original
H(s), especially when H(s) starts to have significant frequency components that
approach the sample rate fs.

The f(z) that is usually used is the bilinear transform defined by

( ) ( )s f z zs= − +− −2 1 11 1
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This transform maps s = jω to the unit circle in the z plane. Furthermore, the
resulting z domain filter retains most (but not all) of the properties of the original
filter.

For example,

( ) ( )
( ) ( )

( ) ( ) ( )[ ]
( )

H s s

s f z z

H z f z z

H z

s

s

= +

= − +

= − + +

=

− −

− −

2 2

2 1 1

2 2 1 1 2

2

1 1

1 1

π π

π π

π ( ) ( )
( )
( )

α β

α π

β α π

1 1

1 2 2

2 2

1 1+ +

= +

= −

− −z z

f

f

s

s

There are other ways to obtain this transform other than just pulling the pro-
verbial rabbit out of the hat, as we have done. One way is to return to the original
idea s = fsln(z). Only we now observe the following expansion of ln(z):

( ) ( )
( )( )ln z

z

k zk

=
−

− +

−

−
=

∞

∑2
1

2 1 1

1

1
1

If we keep the first term in the expansion, we recover the basic result. This result
immediately begs the question: What if I keep more than one term in this expansion,
would things improve in some sense? (The author is not sure, but thinks this would
be a good thesis project.) It would be a more complicated transformation, so the z
domain order of the filter would increase. This, of course, increases the required
simulation speed or increases the complexity of direct implementation.

A second idea is based on the numerical integration algorithm, known as
Simpson’s rule, illustrated in Figure 4.10.
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First start with the basic relation

( )[ ] ( )LT y t dt Y s s∫ =

From Figure 4.10 we have the trapezoidal integration algorithm

( ) ( ) ( ) ( )[ ]y t dt y y y y y y fs s= + + + + +∫ . ..5 0 1 1 2 1 2

Now take the z transform of the RHS of the above as we did before to obtain

( ) ( ) ( ) ( )[ ]
( ) ( ) ( )
y t dt y y y y y y f

H z z z z

s s= + + + + +

= + + + +

∫
− − −

. ..

.

5

5 1 1

0 1 1 2 1 2

1 1 1 ( )[ ] ( )

( )[ ] ( )

( )

z z Y z f

z z z z Y z f

z

s

s

− −

− − − −

−

+ +

= + + + + +

= +

2 1

1 1 2 3

1

1

5 1 1

1 2

..

. ..

( )[ ] ( )f z Y zs 1 1− −

From this we can write the transformation

( ) ( )s f z zs= − +− −2 1 11 1

which is the basic transform again.

4.7 Frequency Warping

In the s domain, the filter described in the last section

( ) ( ) ( ) ( )H s V s V s s sout in= = + +1 1414 12 .

has a 3-db half power point at f = 1 Hz. Figure 4.11 shows the impulse gain response
of this filter via the detailed H(z) with fs = 5 Hz.

A close examination of this filter shows something strange. The gain at f = 1 Hz
is not −3 dB but −3.64 dB. The actual 3-dB point is at f = 0.891 Hz. This phenome-
non is called warping. To see why this happens, return to the basic bilinear transfor-
mation and substitute z = ejΩ and s = jω. This substitution maps the frequency f = ù/2ð
in the s domain to the frequency fz = Ωfs/2π in the z domain. The result is

( )
( )

2 2 2

2

π

π

f f

f f f

s

s z s

=

=

tan

tan

Ω

where fz is the corresponding frequency resulting from the transformation. Now as
the sample rate becomes large, we have f = fz. Substituting f = 1 into the above results
in the fz = 0.891 Hz frequency already found.
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For an arbitrary H(s) there is not much that can be done to correct this warping.
But in the case of s domain filters, we control both ends of the problem. The trick is
to calculate via the above equation what frequency in the s domain must be used in
order to arrive at the desired frequency as executed in the z domain. This procedure
is called prewarping. In the case at hand, if we prewarp to 1.156 Hz, the executed
3-dB point will be the desired 1 Hz

Many design procedures for FIR filters exist in the literature. The general idea is
to provide the information on the filter as shown in Figure 4.12. Here the “frequen-
cies” are entered as fractions of the sample rate. The transfer function information is
the pass band gain, the transition band, and the ultimate rejection. In Figure 4.12 the
design goal is flat 0 dB attenuation to the start of the transition frequency at 0.1 rela-
tive to the same rate. The end of the transition region is at relative frequency of 0.2,
and from there the filter out of band rejection is 40 dB. Most algorithms use some
sort of mean square error to arrive at a solution as close to the desired solution as
possible. The goal is to compute the best fit to the desired with the minimum number
of taps. In Figure 4.12, it is estimated that the filter can be realized with 21 taps. Now
if we make things more stringent then, the number of taps goes up. For example,
changing the first transition frequency to 0.1 to 0.11 Hz would increase the number
of taps to 271. This is due to the fact that the transition bandwidth went from 0.1 to
0.09 relative. The sharper the transition, the greater the number of taps required.

4.8 The IIR Filter

In contrast to the FIR filter, the impulse response of an IIR filter is not confined to a
specific time extent. For a stable system, the amplitude decreases with time, and at
some value it may be regarded as negligible. We have already encountered such a fil-
ter H(s) = 1/(s + 1), which has an impulse response e–t.
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The design steps to implement an IIR filter are as follows:

1. Select the type of filter and the order desired.
2. From tables obtain the s domain poles listed for a 1-ra/sec cut-off

frequency.
3. Prewarp this filter as required.
4. In practice there exist tables that specify these poles for a LPF filter with

3-dB point of 1 ra/sec (not 1 Hz). From there, one applies the following
transformations to achieve the other filter types:

• Low-pass low-pass: s s u→ ω
• Low-pass high-pass: s su→ ω
• Low-pass band-pass: ( ) ( )[ ]s s su u→ + −2

1 1ω ω ω ω

• Low-pass bandstop: ( ) ( )s s su u u→ − −ω ω ω ω1
2

where ωu and ω1 are the upper and lower cut-off frequencies (ra/sec),
respectively.

5. Apply the bilinear transform. Clear fractions to obtain the requisite ratio
of two z domain polynomial N(z)/D(z).
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Example
We consider a simple design that illustrates these steps while minimizing the algebra
required (which is still messy).

Design a first-order Butterworth band-pass filter with low frequency of ω = 10
Hz, high frequency of ωu = 12 Hz, and with a system sample rate of fs = 100 Hz.

The transfer function with respect to a 1-ra/sec low-pass cut-off is

( ) ( )H s sLP = +1 1

The first step is to apply the low-pass to band-pass transformation to this func-
tion

( ) ( )s s Sl u u→ + −2 ω ω ω ω

The result is

( ) ( )H s a s s a s aBP = + +0
2

1 2

where

a

a a

a

u

u l

0

1 0

2

= −
=
=

ω ω

ω ω

A simple consistency check is to apply dimensional analysis to the results.
Notice the three terms of the denominator. The s term has dimensions (ra/sec); the s2

term has the same dimensions since a1 has dimensions of ra/sec, and the constant
term agrees since a2 also has dimensions of (ra/sec). This type of analysis goes a long
way toward catching algebraic errors!

Next we apply the bilinear transformation to get

( ) ( ) ( )H z a f z z z b b z b zBP s= + − − + +− − − − −2 10
1 2 3

0 1
1

2
2

where the coefficients are

b f f a a

b f a

b f f a a

s s

s

s s

0
2

1 2

1
2

2

2
2

1 2

4 2

8 2

4 2

= + +

= − +

= − +

4.9 General Implementation of a Filter of Form N(z)/D(z)

Finally, after all of the required manipulations, the final result is an input output
relation

( ) ( ) ( ) ( )Y z N z X z D z=
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The question is, how do we implement this relation to obtain a final time
domain signal? We proceed by writing the above in the form.

( ) ( ) ( ) ( )

( ) ( )

D z Y z N x X z

b z Y z a z X z

b

k
k

k

m

k
k

k

n

=

=

=

−

=

−

=
∑ ∑

0 0

0 1

By the rules of the z transform, we have the following equivalence:

( ) ( )z Y z y pT yp
p

− ↔ =

So the final time domain representation is

y b y a xk l k k l k
k

n

k

m

1 1
11
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4.10 Practical Consideration in IIR Filter Simulation

Consider a 2N pole IIR filter with a transfer function of the form

( ) ( ) ( )[ ]H s s a s b s a s bN N= + + + +1 2
1 1

2*..*

Now if this filter is stable in the s domain, then the resulting z domain filter

( ) ( ) ( )H z N z D z=

is stable as well. Or is it? In all of our discussions regarding the finite nature of
parameters in a computer, we have not considered the ramifications that a numeric
coefficient is quantized as well. On a PC, it is possible to quantize a floating point to
double precision, which is characterized by double precision floating point that rep-
resents the signal fraction into 52 bits and the overall amplitude into 12 bits = 11
numeric plus 1 bit sign. Now this is quite formidable, but in the case of the IIR it may
not be enough. If the order N of the filter is large and the frequency cut-off is much
less (1%) of the system sample rate, this numeric quantization can make the system
unstable. What happens is that the zeros of D(z), which are all inside the unit circle
with infinite precision, can slip across the circle with the finite numeric math, mak-
ing the filter unstable. This phenomenon is aggravated if the algorithm is executed
on a digital signal processing (DSP) chip where memory is at a premium and severely
limits the number of bits used to represent the coefficient.

One solution to this problem is to break the large filter into smaller pieces and
execute each piece separately. Figure 4.13 shows the basic concept for a four pole fil-
ter. The two sections can be combined into one complete filter, or each section can
be executed separately. The differences between the two are seen in the following
equations:
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( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

Y s H s H s X s

Y s H s X s

Y s H s Y s

=

=

=

1 2

1 1

2 2 1

In a perfect world, both implementations shown are mathematically equivalent.
But the piecewise solution shown greatly mitigates the effects of the finite precision
arithmetic.

4.11 Conclusion

In this chapter we developed the theory of filters. We started with the general con-
cept of amplitude gain, phase delay, and group delay. The Laplace transform was
introduced. Unlike the Fourier transform, the LT can account for initial system
transients as well as the steady state obtained from the FT. The stability of filters
with respect to the s plane was presented. The world of filters was split into IIR and
FIR filters. The IIR filter is usually the result of an appropriate LRC circuit transfer
function. As stated many times in this book, “continuous” does not exist in a com-
puter. Sampling must be performed. To this end, we introduced the discrete version
of the LT, known as the z transform. The bilinear transform was developed as the
connector between the s and z domains. Finally we showed that the finite represen-
tation of the filter coefficients could make an otherwise stable filter, unstable. It was
noted that by breaking up a large order filter into a series of shorter order ones, this
stability issue could be significantly reduced.
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Figure 4.13 Alternative implementation of a filter. The section-by-section version has fewer sta-
bility problems due to finite representation of the filter coefficients.



C H A P T E R 5

Digital Detection
In this chapter, we develop the basic concepts used in digital detection theory. We
start with a concept called a vector channel and arrive at the concept of vector dis-
tances and decision boundaries. Following this, we extend the analysis to that of
time domain signals. Several optimum receiver architectures are derived and
outlined.

5.1 The Vector Channel

We start with the simplest example, shown in Figure 5.1. A logical [1] is encoded as
a value A1, and a logical [0] as a value A2. Between the source and receiver, the
channel is AWGN, which is modeled as a Gaussian random variable (GRV).

The detection rule is to choose between A1 and A2, according to the conditional
probability that

[ ] [ ]
[ ] [ ]

P A r P A r A

P A r P A r A

1 2 1

2 1 2

≥

<

choose

choose

The standard trick is to employ Bayes theorem to invert the arguments of the
conditional probability

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ]

P r A P r A P A

P A r P A r P r

P r A P A e

k k k

k k

k k
tr

π

π

π

=

=

=

We can now write

[ ] [ ] [ ] [ ]P A r P r A P A P rk k k=

Finally, we find a boundary value r according to the rule

[ ] [ ]
[ ] [ ] [ ] [ ] [ ] [ ]
[ ] [ ]

P A r P A r

P r A P A P r P r A P A P r

P r A P r A

1 2

1 1 2 2

1 2

=

=

=
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We have made the logical assumption that each message has equal probability
of occurrence.

What have we gained by all of this manipulation? A lot, because we can write
the expression for P r Ak[ ]. The received value r is the sum of the message and the
GRV noise term. It then follows that r is a GRV as well. So the only thing we need to
know is the mean and variance of r, specifically

( ) ( )
( ) ( )

( )[ ] [ ]

E r E A n

E A E n

A

E r A E n

k

k

k

k

= +

= +

=

− = =2 2 2σ

Since the noise is a GRV, we can write

( ) ( )P r A ek

r A k= − −1

2 2

2
2 2

πσ

σ

Combining this equation with the criteria for the decision boundary reduces to

( )[ ] ( )[ ]1

2
2

1

2
2

2
1

2 2

2
2

2 2

πσ
σ

πσ
σexp $ exp $− − = − −r A r A

which further simplifies to the simple result

( ) ( )
( )

$ $

$

r A r A

r A A

− = −

= +
1

2 2
1

2 2

1 2

2 2

2

σ σ

Figure 5.2 shows the situation described. The decision boundary r is where the
two individual PDF functions intersect. The peak of the two PDFs are at A1 and A2,
respectively. So if r > $r we choose A2, and if r < $r we choose A1.
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A binary transmission system (a scalar is one-dimensional vector)

data vector

[1] A
[0] A

→ 1

2→

r = A + nk
n

Source Receiver

The channel adds noise. What is the structure of the receiver for
optimum recovery of the information?

GRV (0, )σ

Figure 5.1 Basic binary vector channel detection diagram.



Now the big question: What is the probability of error occurring in this decision
process? An error occurs when, say, A1 is transmitted and the added noise is suffi-
cient to make r > r. The probability of such an error is simply

( ) ( )[ ]P e x A dx
r

= − −
∞

∫ exp
$

1

2 2 22 2σ πσ

The area of integration is shown as the shaded area in Figure 5.2. A common term
used here is the “tail of the Gaussian.” This integral can be evaluated as a special
function that is related to the complementary error function erfc(x) as

( ) ( ) ( ) ( )
( )

P e Q x dx erfc

A A

= = − =

= −

∞

∫β π β

β σ

β

exp 2

2 1

2 2
1
2

2

Let us slow down here, for this result is extremely important. Notice that P(e)
depends only on the difference between A1 and A2, not their individual values. In
short the combination [A1 = 1, A2 = 2], gives the same error performance as [A1 =
1,000, A2 = 1,001]. This difference is seen as the distance between the two. This con-
cept of distance is fundamental to all digital communication theory.

We continue with a more complicated example. We now wish to send one of
four equally likely messages. Each message would then correspond to a 2-bit data
pattern. Each message is represented by a two-dimensional vector (in the previous
result the scalars A are just one-dimensional vectors). Specifically we have
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Figure 5.2 Decision boundaries for two amplitude vector channels. The boundary is where the
two PSDs are equal.



This representation corresponds to a QPSK modulation format. Figure 5.3
shows this representation.

In the transmission process each component of the message is corrupted by an
independent sample of AWGN, so the received vector is

r x n

r x n
x k x

y y y

= +
= +

Proceeding as we did before and by simple symmetry, we find that the decision
boundaries are simply the coordinate axis. Again by symmetry, the smallest (nearest
neighbor) distance

( ) ( )d r x r y kk x k y k
2 2 2

12 3 4= − + − = , , ,

from the received vector [rx, ry] to a possible code word is the same as just choosing
the code word by the quadrant that the received signal falls in. This decision process
is simplified since we only need to know the algebraic signs of rx and ry.

The above example was chosen since it represents a common decision problem
relating to QPSK, and to the simplicity of the mathematics required to establish the
decision boundaries. However, the general case would be treated in exactly the same
manner only with some more tedious algebra.

5.2 The Waveform Channel

Of course, we do not send vectors over the air; we send some waveform s(t). We send
one of M time functions

( )s t t T

k M
k 0

1

≤ ≤

≤ ≤
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Figure 5.3 Optimum decision boundaries for the 4 vectors shown. This example is valid for QPSK
modulation.



The received waveform is sampled at a rate m∆t = T. Each sample r(l) = sk(l) +
n(l) is the original signal plus an additive noise term. Each such noise term is inde-
pendent from one sample to the next. Following the same steps as before, the PDF of
the received signal is an m-dimensional Gaussian distribution. The boundary deci-
sions are obtained again by equating the exponent of this distribution. The result is
for two signals k and p

( ) ( )[ ] ( ) ( )[ ]r l s l r l s lk p
l

m

l

m

− = −
==
∑∑ 2

1

2

1

If we multiple the above by ∆t, and take the limit as ∆t → 0, the sum goes over to
an integral yielding

( ) ( )[ ] ( ) ( )[ ]r t s t r t s tk

T

p

T

− = −∫ ∫
2

0

2

0

Now we make the common assumption that the energy of each signal is the
same.

( )s t dt kk

T
2

0

=∫ Energy, all

yields the desired result:

( ) ( ) ( ) ( )r t s t dt r t s t dtk

T

p

T

0 0
∫ ∫=

This is a basic result. What is says is the optimum receiver correlates the
received signal r(t) with all possible basis wave functions s(t), and the one that pro-
duces the largest value is chosen as the transmitted message. This is called a correla-
tion receiver, and it is shown in Figure 5.4.

5.3 The Matched Filter Receiver

A basic problem in detection is illustrated in Figure 5.5. A known signal s(t) is cor-
rupted by noise. The question is: What is the optimum filter, H(f), that maximizes
the SNR at the output at some time T?

There is a formal derivation of the answer, but let us try and sneak up up on it
by using some simple logic. Let S(f) be the PSD of s(t). Suppose S(f) has no content
[S(f) = 0] from, say, 10 to 20 Hz. Then there is no reason for H(f) to pass any fre-
quency in this range since it would only contain noise. Conversely, if S(f) is large (10
to 20 Hz), H(f) should be large as well. The logical conclusion is that H(f) should
look as much like S(f) as possible, which leads to the actual answer:

( ) ( )
( ) ( )

H f S f

h t s t

=

=
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The filter is matched to the signal, or more commonly put, this is a matched fil-
ter. As a simple example, consider the NRZ pulse.

The output of the matched filter at the sampling time T is now

( ) ( ) ( )

( ) ( ) ( )

y t r h t d

y T r t h t dt
T

= −

=

∫

∫

τ τ τ

0

This result is exactly the same as that for the correlation receiver. Figure 5.6 is
the block diagram of an optimum matched filter receiver.

Consider this important question: What is the SNR measured at the sample time
of the matched filter? We need to develop y(T) further to get the answer:
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Figure 5.4 Ideal correlation receiver architecture. The received signal is correlated with each of
the possible message waveforms. The correlation with the largest value is chosen as the transmit-
ted signal.

s(t) + n(t) Sample at t = T
h(t)

What is the form of h(t) which maximizes
the output SNR at some time T?

h(t) = s(T-t)

This is called the matched filter.

Figure 5.5 Optimum filter maximizes output SNR at sample time T.
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The quantity E is the signal energy. Now the SNR is defined as

( )SNR y y y= −2
2

Since the noise is zero mean we immediately have y t E2 ( ) = . The noise term
takes a little more doing:
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Figure 5.6 Matched filter receiver. The received waveform is passed through matched filters rep-
resenting the set of possible signals. At the sample time T, the results are compared and the largest
value is chosen as the transmitted signal.



Combining the two pieces gives

SNR E N= 2 0

This result is remarkably simple and powerful at the same time. The maximum
output SNR of a matched filter depends only on the signal energy E and the noise
power density N0. Observe that there is no statement here as to what the signal looks
like in time or what the signal PSD looks like in frequency. This situation comes into
play in some systems where the SNR is measured as the power in some bandwidth B,
usually the IF bandwidth of the receiver. Changing B changes this measure of the
SNR, but not the basic result 2E/N0. In short, you cannot cheat the definition to suit
a purpose! Another fact is that any other filter inserted between the transmitted sig-
nal and the matched filter will degrade the SNR, however slightly.

The Integrate and Dump (I&D) Matched Filter
The I&D is a common matched filter. Consider the NRZ pulse

( )P t t T= ≤ ≤1 0

The Laplace transform of this pulse, which is also the transform of its matched
filter, is given by

( ) ( )H s e sTs= − −1

The matched filter is realized by sampling the output at times 0, T, 2T, etc.
Where does the term I&D come from? To answer this, consider the simple RC

circuit shown in Figure 5.7. From circuit theory, the transfer function from the input
to the capacitor voltage is given by

( ) ( ) ( )v s v s sc in = +1 1 τ

τ = RC is the circuit time constant. When τ is large, the transfer function acts simply
as an integrator. The voltage builds up on the capacitor. But what happens if we
momentarily short out the capacitor every T seconds? Then the voltage goes to zero
and the integration starts over again; I&D. The symbol ↓∫ is commonly used to

demote this operation. Figure 5.8 shows a block diagram of the equivalent circuit in
the time domain. It solves the differential equation

( )R dq dt q C V t+ =
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In this model we control the effective capacitance by the square wave time
function.

5.4 From Signals to Vectors

We started this chapter with a discussion on a mathematical vector receiver. We fol-
lowed that with the optimum detection of a series of time-based waveforms. If all
we need is the latter discussion, why introduce the vector channel in the first place?
We take this issue up now.

First of all, note that we can make a set of time basis functions as a basis for
some vector analysis. The handbooks are full of sets of orthogonal functions that
can be used for various purposes. What we require is a set of time functions {sk(t)}
having the properties

( ) ( )s t s t dt k p

k p

k p

T

= ≠

= =

∫ 0

1
0

Such a set is said to be orthonormal. An arbitrary function s(t) can then be writ-
ten in the expanded form
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Figure 5.8 True integrate and dump matched filter simulation.



The waveform is completely described by the set of coefficients {ck}. So at the
transmitter we choose the particular members of this set to describe the message
waveform of interest. At the receiver, the signal is corrupted by noise n(t) presenting
a waveform r(t) = s(t) + n(t). The objective of the receiver is to make the best estimate
of {ck}, denoted as { }ck . The following shows the steps to accomplish this:
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What we now have is a received vector set { }ck , which is the sum of the true vec-

tor set {ck} plus statistically independent noise vector set {nk}. The bottom line here is
that we have reduced the signal problem back to the previously described vector
problem, with all of the rules still in force.

An important illustration of the error probability in a two-dimensional case is
the comparison of two basic waveforms:

• Binary FSK: In this method a logical [1] is sent as some frequency f1, and a logi-
cal [0] is sent as another frequency f2.
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where T is the signaling time at rate r = 1/T. We choose the frequencies such
that

( ) ( )s t s t dt
T

1 2
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0=∫

This can be satisfied if f1 = n/T, f2 = m/T. In this case the two waveforms are the
basis vectors of a two-dimensional space, so we can write
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,

,
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• Binary PSK: In this mode, a logical [1] is transmitted as a 0 phase with respect
to the carrier, and the logical [0] is transmitted as a relative phase of π. The
two waveforms are then (remembering that cos(π) = −1)
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2

2

=

= −
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such that

( ) ( )s t s t dt
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1 2
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1= −∫

From this example the vector relation relative to a two-dimensional space is
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The two cases are combined and shown in Figure 5.9.
What is the difference in BER performance of these two cases? The answer was

already derived at the beginning of the chapter. The BPSK is clearly the same scalar
case since it only has one vector component. The FSK can also be reduced to the
same type of scalar case by a rotation and translation of the axis, shown in Figure
5.8. In either case, the BER is dependant only on the distance, d, between the signal
vectors giving the results
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Figure 5.9 Two-dimensional vector representation of orthogonal FSK, and antipodal BPSK. The
BPSK’s distance squared is twice that for FSK.



Figure 5.10 plots these two BER curves relative to the Eb/N0. correlation
receiver. Of course, both cases must go to BER = 0.5 as Eb/N0 → 0; but observe the
difference as Eb/N0 → 8. The BPSK (antipodal) case has a 3-dB advantage over FSK
(orthogonal) for the same BER. In other words, it takes half the signal energy
(power) for the same performance. It is useful to remember the indicated point on
the plot: BPSK BER = 10–5 for an Eb/N0 of 9.5 dB.

5.5 The I, Q Vector Space

The correlation receiver, matched filter receiver, and the vector receiver all produce
theoretically optimum procedures for recovering the signal in noise. The problem is
that the computational load to implement them might be very high. This is especially
true when considering higher order modulations such as Mary phaseshift keying
(MPSK) and quadrature amplitude modulation (QAM). Consider a not so unusual
situation as 256 QAM modulation. We could implement the optimum detector with
256 correlators. This would be very time consuming. What we want is a minimum
basis set. One possibility is the set used in Fourier series

( ){ } ( ) ( ){ }s t k T k Tk = sin , cos2 2π π

One would use this set for MFSK modulation. However, as the number of mes-
sages, N, increases, the basis set increases in proportion. The receiver would still be
required to perform N correlations. We stated before that MFSK is not generally
used because it increases the signal bandwidth, and add to this the current fact about
the vector basis size limits MFSK to a maximum of four, for most practical purposes.
But observe that the functions sin(2πt/T), cos(2πt/T) form a two-dimensional
orthogonal basis vector set since
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( ) ( )cos sin2 2 0
0

π πt T t T dt
T

=∫

Thus a large majority of current systems are based on multiple vectors in a
two-dimensional space of the form

( ) ( ) ( ) ( ) ( )s t I t ft Q t ft= +cos sin2 2π π

The I signal is commonly called the in-phase component, and the Q signal is the
quadrature component. For quadra phase shift keying (QPSK), I = ±1 and Q= ±1
also. Furthermore, note that the physics of the transmitting sine wave signals s(t) is
generally in the form

( ) ( ) ( )[ ]
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( ) ( ) ( )( ) ( )

s t A t t
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π π

t

I t f t Q t f t= +2 20 0

This is true even for MFSK signals.
This I,Q representation is the basis for virtually all communication systems.

5.6 Conclusion

In this chapter we developed the basic methodology for optimum detection of digi-
tal signals. We started with the concept of vector signals, and showed that the opti-
mum detector chooses the output that is the nearest distance to a possible member
of the vector set. We then went from vectors to time functions. First we derived two
forms of an optimum waveform receiver, namely, the correlation and matched filter
receiver. Next we showed how to represent a time waveform as a linear combina-
tion of an orthogonal based set. This representation then provided the connection
between the time waveform detection and the vector space concept. As a result of
this, we showed that antipodal vectors (BPSK) enjoyed a 3-dB detection advantage
over orthogonal vectors (FSK). Finally we observed that the most commonly used
structure was the two-dimensional IQ format.
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C H A P T E R 6

Modulation
Once the transmitter has produced the final bit stream, the last step is to modulate it
onto a suitable carrier. This chapter describes the most commonly used modula-
tions. It is possible to vary only the amplitude, phase, or frequency of a sine wave.
So all modulation formats are some theme and variation of using these three possi-
bilities. In general, simulating a modulator is a relatively easy task, much easier than
that of the receiver.

Our emphasis in this chapter will be on digital modulation as opposed to stan-
dard AM and FM modulation.

6.1 Amplitude Modulation (MASK)

One of the simplest forms of digital modulation is multiple amplitude shift keying
(MASK). In its simplest form, a logical [1] is transmitted with some amplitude A,
and a logical [0] is not transmitted at all. This format is commonly called on-off key-
ing (OOK). Figure 6.1 shows an input NRZ data, and Figure 6.2 shows the resulting
transmitted signal on a carrier. Figure 6.3 shows the same idea with four levels of
amplitude, 4ASK, Figure 6.4 shows the corresponding modulated signal.

We can continue this process indefinitely. Take k bits in a group to make one of
2k amplitudes to be modulated. As k becomes large, the required bandwidth
becomes smaller, but the decision levels required to differentiate the levels become
closer together, thus causing a loss or performance.

6.2 Frequency Modulation (MFSK)

In two-tone multiple frequency shift keying (MFSK) a logical [1] is transmitted at
some frequency f1, and a logical [0] is transmitted on some other frequency f2 (see
Figure 6.5).

We now FSK modulate this data pattern using two tones, 1 and 2 Hz. The
resulting modulated waveform is shown in Figure 6.6.

The PSD of this modulation is shown in Figure 6.7 Note that there are two
unmodulated (CW) components at 1 and 2 Hz. These CW tones carry half of the
modulated signal energy. This is wasted energy as far as detection is concerned. This
is why the FSK example of Chapter 5 shows a 3-dB loss in detection performance.

Clearly, this idea can be extended to 4FSK, 8FSK, and so on. But take a look at
the evolution of the signal PSD as we do this. If the original data rate is R = 1/T, then
every T seconds we send one of two frequencies separated by R Hz. The bandwidth
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Figure 6.1 The input NRZ data to be binary ASK modulated.
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is then about 2R as seen in Figure 6.7. Now take 3 bits at a time. Then we transmit
one of 23 = 8 Frequencies separated by 8/3T seconds for a bandwidth of 4R. One
more time: Taking 4 bits, we send one of 16 frequencies every 1/4T seconds requir-
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ing a bandwidth of 16/4T. In general for MFSK the bandwidth increases as 2M/M,
which is not a good thing. For this reason MFSK is not commonly used; the highest
seen by the author is 4FSK.

6.3 Phase Modulation (MPSK)

Multiple phase shift keying (MPSK) modulation is the most commonly employed
format used due to the relative simplicity of the modulator and demodulator. The
simplest version is BPSK, where a logical 1 is encoded as 0 phase, and a logical 1 is
coded as a phase of π. This is represented by the equation

( ) ( ) ( )
( )

s t A f t a kT t k T

Aa f t a

k

k k

= + ≤ ≤ +

= = ±

sin

sin

2 1

2 1
0

0

π π

π

This format can be extended to higher orders

( ) ( )s t A f t k= +sin 2 0π ϕ

where the phase set for QPSK is given by

ϕ πk
k k= =2 4 012 3, , ,

This general idea can be extended to 8PSK, which encodes 3 bits of data into
one of eight phases, and so forth.

At this point we introduce the useful concept of a signal constellation. The idea
is to plot the possible values of the I signal against the corresponding values of the Q
signal. This is illustrated in Figure 6.8 for 8PSK. Note that the constellation is sim-
ply eight points (phases) on a unit circle since for this modulation we have I2 + Q2 =
constant = power. Furthermore, this figure shows two methods of encoding the data
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into those phases. In the first method, known as natural order [], the encoder simply
maps the phase into the binary count order of the bits as shown: [000] = 0, [001] =
π/4, and so forth, around the circle. But look closely at the encoding [111] into 7π/4.
As can be seen, this symbol encoding is the nearest constellation member to the
[000] code word phase. From detection theory, if the symbol [000] is transmitted,
then the most likely error is the two nearest neighbors in the constellation, 7π/4
being one of them. In this case the decoded symbol will produce 3 bit errors. The
solution is called Gray encoding and is illustrated by the assignment () in Figure 6.8.
Now the error caused by nearest neighbor decoding is only 1 bit of 3 no matter
where in the constellation the original signal is.

Why go to higher order modulation? The answer is bandwidth. The group of k
bits into one of the 2k phases is called a symbol, as opposed to the term bit. Suppose
that the original data rate is 1 bps. Then a QPSK symbol would change every 2 bits
or at a 0.5 symbols/sec rate. The 8PSK would encode into symbols at a rate of 1/3
symbols/sec, and so forth. The occupied spectra of these cases are shown in Figure
6.9.

As Figure 6.9 shows, the higher the order, the more compact the occupied spec-
tra, which is a good thing.

So if 8PSK does better in bandwidth than QPSK, why not continue this process
to a much higher order PSK with the attendant savings in bandwidth? Unfortu-
nately, Mother Nature does not cooperate in another overriding area: detection.
From detection theory, the factor that sets the system BER is the distance between
the nearest constellation points. For a given bit rate for MPSK, as the order
increases, the diameter of the constellation increases since the symbol energy

E A T A kT kEs b b= = =2 22 2

is increasing. At the same time the number of points on the circle increases as well.
The result of this process is shown in Figure 6.10. The general expression for this
distance, d, is given by
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( )d kEk b
k2 24 2= sin π

which is plotted in Figure 6.11. From this figure we observe a very important obser-
vation. The distance for BPSK is the same as the distance for QPSK. Therefore, the
BER performance for the two is the same. But we have also shown that the QPSK
only requires half the bandwidth of the PSK. From Figure 6.11, we also see that the
distance (performance) decreases steadily beyond QPSK. This fact is why QPSK is
the workhorse modulation type of nearly all modern digital communication sys-

6.3 Phase Modulation (MPSK) 85

Q
A

m
p

lit
ud

e

I Amplitude

−3 −2 −1 0 1 2 3

8PSK

BPSK

QPSK

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Figure 6.10 Vector signal constellations for MPSK. The diameter of the circle increases, but after
QPSK the number of points on the circle increases at a faster rate, thus reducing the distance
between the nearest neighbor points.

BPSK QPSK

8PSK

MPSK level k, 2 k Symbols∧

D
is

ta
nc

e

4

3.5

3

2.5

2

1.5

1

500e-3

0

1.5 3.5 5.5 7.5

1.5 3.5 5.5 7.5

Figure 6.11 The distance between constellation points for MPSK. BPSK and QPSK have the same
distance. Beyond that, the distance and performance decreases.



tems. Some 8PSK systems do exist, such as GSM/EDGE. It is nearly impossible to
find any modulation order higher than 8PSK in any modern system.

6.4 /4 DQPSK Modulation

π/4 DQPSK modulation is used in many wireless formats such as IS-136. The input
data bits in groups of two are encoded to phase according to the differential rule
shown in Table 6.1.

The signal constellation for this format is shown in Figure 6.12. Observe that
the transition from one state to another never goes through the origin of the graph.
This is important to the hardware designers. For efficient use of amplifiers, it is
desired to minimize the peak to average ratio of the signal. This is important to the
hardware designers.

6.5 Offset QPSK Modulation

Offset QPSK modulation is similar to QPSK, except that one of the data channels,
Q, is delayed by 1/2 of a bit time with respect to the I channel. This is modeled by the
equation

( ) ( ) ( ) ( ) ( )s t I t f t Q t T f t= + −cos cos2 2 20 0π π

It can be seen that the signal phase can only change by ±π/2 every T/2 seconds.
The signal constellation is shown in Figure 6.13.

As with the π/4 DQPSK, there is no transition path from one state to another
that passes through the origin.

Offset QPSK is used by the IS-95 wireless system for the return (mobile to base)
link.

6.6 QAM Modulation

We saw that for MPSK the signal distance decreases beyond QPSK. Note in Figure
6.10 also that the constellation has a huge hole in it where one might place signals
that have a greater distance. This is the effect when quadrature amplitude modula-

86 Modulation

Table 6.1 PI/4 DaPSK Symbol
to Symbol Phase Change

Symbol
Phase
Transition (deg)

00 45

01 135

10 –45

00 –135



tion (QAM) is employed. QAM is similar to ASK modulation except that we put an
ASK signal in the in-phase (cosine) and quadrature (sine) modulation term. The
mathematical description of this signal is

( ) ( ) ( )s t a f t b f tk k= +cos sin2 20 0π π

where ak and bk are multiamplitude values of the form [±1, ±3, ±5, ..., ± 2M−1]. For
M = 2, there are four terms on the I component and four terms on the Q component.
Figure 6.14 shows a constellation in this case.

6.6 QAM Modulation 87

IA
m

p
lit

ud
e

Q Amplitude

−1 −500e-3 0 1500e-3

−1 −500e-3 0 1500e-3

−1

−500e-3

0

500e-3

1

Figure 6.12 Constellation of π/4 DQPSK modulation. No state transition goes through the
origin.

−1 −500e-3 0 500e-3 1

IA
m

p
lit

ud
e

Q Amplitude

−1 −500e-3 0 500e-3 1

−1

−500e-3

0

500e-3

1

Figure 6.13 Constellation of offset QPSK.



There are 16 points in the figure, and this is denoted by 16QAM. With eight ele-
ments on a side, we have 64QAM and so forth. More complicated configurations are
also possible that are not rectangular, and are not based on a 2L basis. Just like
MPSK, as the order of the QAM increases, the required transmit bandwidth
decreases. QAM modulation is the basis of the various dial-up modems commonly
used in computer to Internet communications. QAM orders of 256 and greater are
common. The price that is paid, like MPSK, is that the BER performance degrades for
higher orders. But the telephone channel is a high SNR entity, so the performance
loss can be tolerated while gaining valuable bandwidth compression. The common
telephone has a bandpass filter that runs from 300 to 3,000 Hz, which is the spectra
occupancy of the human voice. Thus, to increase the bit rate to the max, 56K at the
moment, a high order of QAM along with exotic coding techniques is required.

6.7 MSK Modulation

Minimum shift keying (MSK) is a member of a class of modulation known as contin-
uous phase modulation (CPM). MSK is derived from the formula

( ) ( )( )s t A f t m t dt= + ∫sin 2 20π πµ

where m(t) is the NRZ data waveform with rate R = 1/T. The modulation gain µ is
chosen such that the signal phase advances by ±π/2 over a bit period T. This implies
that

( )2 1 2

4
0

πµ π

µ

dt

R

T

=

=

∫

The advantage of MSK is that the spectral occupancy is much more compact
than that of the BPSK signal of the same rate. In a BPSK signal the phase can
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instantly jump from 0 to π at the bit transition. This jump causes the wide occupied
spectrum of the BPSK signal. In MSK the phase is continuous across the bit transi-
tion owing to the integral phase representation.

A common variant of MSK is called GMSK (the G stands for Gaussian). Figure
6.15 shows this technique. It shows that the input data m(t) is passed through a
Gaussian low pass filter whose 3-dB bandwidth B is determined by BT = 0.3. GMSK
is the modulation of the GSM wireless format used extensively in Europe and
around the world. The Gaussian filter is used to further compact the signal spec-
trum as shown in Figure 6.16.

6.8 OFDM Modulation

Orthogonal frequency division modulation is used in many wireless systems such as
the 802.11g standard. Another name is multicarrier modulation (MCM). In Chap-
ter 10 on Channel Models we describe the effect of a single delay path that combines
with the direct signal. The effect of this is to put notches in the transmitted signal
spectra as seen at the receiver. In a complicated environment, there could be several
such notches, which can come and go as the system dynamics change. One
approach to this problem is to employ an equalizer that some how knows or learns
what the channel is doing, and then makes the appropriate correction.

In the OFDM approach, instead of modulating all of the high speed data onto a
single carrier, the trick is to modulate many narrowband carriers each bearing part
of the original data stream. For example, a 100-Mbps channel can be QPSK modu-
lated on a carrier with a null-to-null bandwidth of 200 MHz. An alternative might
be to split the data into five data streams with data rate 20 Mbps, and modulate
each on a carrier separated by 40 MHz. This is illustrated in Figure 6.17(a–d). In
reality, the number of such carriers can be 1,000 or more. The 802.11g wireless
LAN standard uses some 1,700 carriers.

What is gained by this format? Return to the frequency selective fade channel.
Now the fade notches will only eliminate a small number of the carriers specifically
where they occur. By proper FEC and interleaving, the receiver can process through
these notches.

In complex notation we can write an OFDM modulation in the form

( )s t c ek
jkt T

k

N

= −

=

−

∑ 2

0

1
π
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where ck is the complex [I, Q] symbol modulating the kth carrier, and 1/T is the car-
rier spacing. The above looks something like the DFT algorithm described in Chap-
ter 2. In fact, the generation algorithm generally employs an FFT even if N is not
some nice power of 2. What is done is to increase the actual N to a power of 2, and
simply tell the FFT that the coefficients ck for the appended noncarriers are simply
zero.

There is one final and very important feature of OFDM. In a frequency selective
fade environment, the delay at one frequency will be different than the delay at
another. This is illustrated in Figure 6.18 where the symbol time is 1 second, and
there are four carriers. Figure 6.18 illustrates what happens to one such OFDM
symbol at the receiver. The vertical bars are aligned with the 4-Hz component as a
reference for the relative delays of the other tones.

What we see is that the timing of the various components of the OFDM signal
are shifted with respect to each other. Now what happens if we try to use the inverse
FFT operation for the demodulator? For this to work, all of the individual fre-
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quency components must line up in time at the receiver, as they were at the transmit-
ter. This is not the case in the stated environment. Attempts to use the inverse FFT
will run into intersymbol interference (ISI).

The solution to this problem is rather ingenious. First we denote the already
defined delay spread as T∆, and the useful time as

T T Tu = − ∆

At the modulator, the symbols are still presented at T second interval. But the
FFT algorithm used is modified to

( )s t c ek
k

N
kt Tu=

=

−
−∑

0

1
2 π

In other words, the orthogonal basis in time is Tu not T. The time associated
with the above is to produce a symbol of Tu < T seconds long. The trick is to extend
s(t) as generated by the FFT from Tu to T seconds.

At the receiver, as stated, different frequency components encounter different
delays. But as long as the delay spread is less than Tu, there is always a segment
within the T seconds of the symbol of Tu seconds long that does not suffer any over-
lap. The receiver simply truncates the appropriate portion of the symbol down to Tu,
and performs the inverse FFT recovering the data.

The 802.11g wireless LAN specification uses T = 4 usec, Tu = 3.2 usec, and Td =
0.8 usec.

6.9 Pulse Position Modulation

In pulse position modulation (PPM), the information amplitude is converted into a
pulse whose position with respect to the symbol time marker is proportional to that
amplitude. PPM is one format that has been proposed for UWB modulation systems.
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Figure 6.19 shows the representative input set of data signals, and Figure 6.20
shows the resulting PPM modulation. In this case the input symbols are at a rate of 1
Hz. The lowest symbol at 0, corresponding to the bit pair [0,0], is mapped to a zero
pulse position offset from the frame boundary. The +1 amplitude symbol, corre-
sponding to the bit pair [0,1], is displaced by 1/4 of the symbol time, and so on.

While this example shows 4-PPM, it can be extended further to 8-PPM, and
beyond.

6.10 Pulse Width Modulation

In pulse width modulation (PWM), the width of the pulse with respect to the symbol
time marker is proportional to the data. Figure 6.21 shows the input four level sym-
bols as in the PPM case. Figure 6.22 shows that the width of the pulse from the sym-
bol boundary is proportional to that information. In Figure 6.22 the pulses were
given a Gaussian shape to make the presentation clearer.

As with the PPM case, this idea can be extended to higher order modulation.

6.11 GSM EDGE Modulation

The Global System for Mobile Communication (GSM) Enhanced Data Rate for
Global Evolution (EDGE) system was developed to provide high data rate to the
GMSK wireless system. The modulation is 8PSK with a twist. Figure 6.23 shows the
basic block diagram.

The top row of functions is a standard 8PSK modulator. The input bits are con-
verted in groups of three to one of eight symbols [0, 7]. Each symbol is then modu-
lated as one of eight phases. However, the phases generated at this point are all
advanced by a rotating factor of 3/8 radians. To see the effect of this rotation, Figure
6.24 shows the signal constellation obtained.

The important feature here is that the transitions from one state to another
never go through the origin of the diagram. This is the same feature as noticed for
the IS-136, π/4 DQPSK system.
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6.12 Spread Spectrum Modulation

Spread spectrum communications were originally developed for military purposes,
but now they have a wide variety of uses in the public sector as well. The world of
spread spectrum is divided into two general categories: frequency hopping and
direct sequence. Some applications include the following:
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• Antijam (AJ);
• Low probability of intercept;
• Ranging;
• Antimultipath;
• Multiple access (e.g., CDMA);
• Antiinterference.

(See Appendix D for an interesting trivia question relating to spread spectrum
technology.)

6.12 Spread Spectrum Modulation 95

Source: PN Seq
Rate = 812.5e+3 Hz

8 phase
modulator I out

Q out

3pi/8 phase rotation

Figure 6.23 GSM EDGE modulator. The system is a basic 8-PSK with and additional 3 ð/8 rota-
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6.12.1 Frequency Hopping

Frequency hopping (FH) was originated and is still used for AJ purposes. U.S. Army
tactical radios operating in the 30 to 88-MHz band use this technology. The idea is
quite simple. If the jammer jumps on your frequency, move to another one. The
whole process is coordinated where frequency hop occurs at regular intervals, the
hop rate. The sequence of the hops is known to both the transmitter and receiver
(but not the jammer!) so they stay in step. The jammer must either guess the next
hop, or broaden the bandwidth of his signal to try and cover all possibilities at once.
For a fixed power jammer, this broadening reduces the delivered jamming power per
channel. Figure 6.25 shows the basic block diagram of an FH system. Figure 6.26
shows the concept of the FH in time.

6.12.2 Direct Sequence Pseudo Noise

The direct sequence pseudo noise (DSPN) system works as follows. The basic NRZ
data wave form d(t) of rate Rd, is multiplied by the logic exclusive OR (XOR) with a
second spreading code pn(t) that has a chip rate Rp >> Rd. The transmitted signal is
simply

( ) ( ) ( )s t d t p tn=

At the receiver (once synchronized) the signal is again multiplied by pn(t). Under
the proviso that p tn

2 1( ) = , the net result is

( ) ( ) ( )
( ) ( ) ( )
( )

r t s t p t

d t p t p t

d t

n

n n

=

= ⋅

=
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So we have taken a few extra steps in the modulation process to spread and
despread the signal. The process of multiplying by pn(t) is called spectrum spread-
ing. The reverse process of recovering d(t) is called spectrum collapsing or
despreading. In short, we go from a narrowband signal to a wideband signal and
back again to the original narrowband signal.

Figure 6.27 shows a basic block diagram of the process. Here we insert all of the
bad things that can happen to a signal between the transmitter and receiver. Let us
take these impairments one at a time and see what we have gained by this operation.
It should be significant since we have increased the required bandwidth of the sigal,
which is usually a bad thing.

The receiver applies pn(t) to the total received signal r(t):

( ) ( ) ( ) ( ) ( ) ( ) ( )r t d t p t nb t wb t mp t n tn= + + + +

where nb(t) is narrowband interference, wb(t) is wideband interference, mp(t) is the
multipath signal, and n(t) is additive white noise.

Now we multiply the received signal by the dispreading code pn(t) to get

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r t p t d t nb t p t mp t p t n t p tn n n n= + + +

As said, d(t) is narrowband, but what about the rest of the terms? It turns out they
are all wideband as long as the multipath delays are greater than one chip of the pn
code.
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Figure 6.28 (a–f) illustrates these concepts for a case with a data rate of 10 Kbps
spread by a pn(t) code of rate 1 Mbps. There is a CW interferer at 500 kHz from the
center of the modulated signal. Figure 6.28(a) shows the input data stream. Figure
6.28(b) shows the PSD of the input data stream. The nulls in the spectra are at multi-
ples of 10 kHz. Figure 6.28(c) shows the PSD of the pn(t) spread signal with the CW
interference. The nulls in the spectra are at multiples of 1-MHz spreading code rate.
At the receiver the signal is multiplied by the same pn sequence as used in the modu-
lation. Figure 6.28(d) shows the resulting PSD after this operation. Note that the
pn(t) signal is still there, but it is now centered on the location of the interference. The
centered narrowband PSD is the collapsed spectra of the original data. Figure
6.28(e) shows a zoom of this portion of the spectra. Figure 6.28(f) shows the recov-
ered data signal after narrowband filtering the signal of Figure 6.28(d) around the
data only. This eliminates most of the residual spread signal that is now centered on
500 kHz.

The earliest applications of spread spectrum modulation were for military
antijamming systems. In recent years, however, it has played a major role in wireless
cell phone systems such as IS-95, CDMA, and 3G. The basic concept behind spread
spectrum is code division multiple access, where each user is assigned a spreading
different code. These codes may be entirely different or at a different phase position
of the same code. All users occupy the same wideband spectra at the same time. At
the receiver, the desired signal is recovered by multiplication of the appropriate pn(t)
code. The desired signal bandwidth is collapsed, as mentioned before, while the
product with other pn(t) signals results in yet another wideband signal. A
narrowband filter recovers the desired signal. These operations are generalized in
Figure 6.29. Now operation of spreading and dispreading does not change the
power of the signal. It just rearranges the power in the frequency domain. By simple
geometry, then, the areas under the signal blocks have the same power for all sig-
nals. But the collapsed signal has a bandwidth that is smaller than the spread signals
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by the ratio of the original data rate to the spread rate B/W. So the output SNR0 rela-
tive to the input SNRi is simply

SNR SNR W Bo i =

This ratio is called the processing gain (PG) of a spread spectrum signal. In the
case detailed in Figure 6.28(a–f), this ratio is [1 MHz / 10 kHz] = 100 or 20 dB.

In the original military AJ operations, even a processing gain of 30 dB was not
sufficient. This is due to the fact that the wrong user may be much closer to a
receiver than the desired signal. This is the so-called near-far effect. Even after the
dispreading operation, the unintended signal might still overpower the desired sig-
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nal. For this reason most of the tactical AJ systems such as Single Channel Air
Ground Radio System (SINCGARS) use FH techniques. In the wireless world, it is
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possible (and mandatory) to control the user equipment power so that all signals
arriving on top of each other at the base station have the same power.

One last thought: Suppose that the channel contains only AWGN. Then the
spread spectrum operations produce a PG enhancing the system performance. In
concept, we could increase the PG and correspondingly decrease the system BER. If
only that were true. Recall in Chapter 5 on detection that for AWGN the output of
the final matched filter is 2Eb/N0 without regard to the signal bandwidth. True, the
spread spectrum operation as defined does give a PG, but the input SNRi is lower by
the same factor due to the spreading. We have opened up the receiver to a larger
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noise bandwidth W, not B. Thus, the final output SNR is the same with or without
spread spectrum modulation.

6.13 Conclusion

In this chapter we presented a wide variety of modulation techniques. Note that they
are all based on the fact that the only things we can change in the physical world are
the amplitude, frequency, or phase of a sine wave. We also developed the basics of
spread spectrum communications. These techniques were originally developed for
military purposes, but now have found their way into many commercial systems,
especially the wireless cell phone industry.

Selected Bibliography

Pahlavan, K., and A. H. Leveseque, Wireless Information Networks, New York: John Wiley &
Sons, 1995.
Proakis, J. B., Digital Communications, New York: McGraw-Hill 1983.
Rappaport, T. S., Wireless Communications, Principles and Practice, Upper Saddle River, NJ:
Prentice Hall, 2002.
Sklar, B., Digital Communications, Fundamentals and Applications, Upper Saddle River, NJ:
Prentice Hall, 2001.
Steele, R., Mobile Radio Communications, London: Pentech Press Limited, 1992.

102 Modulation

This is the residual
interference between
channels

This is filtered out Pn(k)*Pn(m)

Pn(k)*Pn(k)

Pn(k)*Pn(mm)

Frequency

Figure 6.29 CDMA processing.



C H A P T E R 7

Demodulation
Simulating the demodulator is considerably more difficult than simulating the
transmitter. At the receiver, parameters such as frequency offset, bit timing, and
symbol block time become significant. In this chapter we shall develop some basic
demodulation procedures that are commonly and nearly universally employed. The
last section is devoted to the concept of baseband simulation that eliminates the
transmitted carrier frequency from consideration. This process can significantly
increase the simulation speed.

7.1 In-Phase (I) and Quadrature (Q) Down Conversion Process

In Chapter 6 we showed that a transmitted signal can be represented by the form

( ) ( ) ( )( )
( ) ( ) ( ) ( )

s t A t f t t

I t f t Q t f t

= +

= +

sin

cos sin

2

2 2

0

0 0

π θ

π π

where f0 is the transmitted carrier frequency, and the information is conveyed by the
in-phase signal I(t) and the quadrature signal Q(t). The receiver tunes to f0 filters the
signal and usually produces the result to an intermediate frequency (IF). This is
called a heterodyne receiver. There are several standard IF frequencies in use: com-
mercial AM uses 455 kHz and commercial FM uses 10.7 MHz. Other well-known
IF frequencies are 70 MHz and 21.4 MHz, and there are others.

The I/Q down conversion process is straightforward. The operation is shown in
Figure 7.1. The output of this process is called I and Q, but they are not the informa-
tion I and Q we started with. We label them I′(t), Q′(t), and the development below
relates them to the original I(t), Q(t). The mathematical operations for I′(t) are

( ) ( ) ( )[ ] ( )
( ) ( ) ( ) ( )[ ]

′ = +

= + +

I t s t f t h t

I t f t Q t f t f t

d

d

cos *

cos sin cos

2

2 2 20 0

π α

π π π( )[ ] ( )
( ) ( ) ( ) ( )[ ] ( ) ( )

α

π π π α π

*

cos sin cos cos sin sin

h t

I t f t Q t f t f t f td d= + −2 2 2 20 0 [ ] ( )α * h t

In the above, we have allowed for the possibility that the signal is not exactly
centered in the IF band pass, ∆f = f0 – fd, and there is an unknown phase difference α
between the I Q oscillators and the phase of the received signal. The role of the filter
h(t) is to remove the mixing term with frequency 2fd + ∆f without disturbing the
down converted or baseband signals I and Q. The results for I′(t), Q′(t) are

103



( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

′ = + + +

′ = + −

I t I t ft Q t ft

Q t I t ft Q t

cos sin

sin co

2 2

2

π α π α

π α

∆ ∆

∆ ( )s 2π α∆ft +

From here, I′(t), Q′(t) are processed in accordance with the type of modulation to
recover I(t) and Q(t).

7.2 Low-Pass Filtering

The architecture of Figure 7.1 is nearly universal in modern day signal processing.
As shown, it represents an analog implementation. However, the digital world has
taken over and the operation is performed digitally in one of two ways. In the first
method the signal is analog until after the low pass filters. At that time A/D circuits
are inserted in the I and Q paths and convert the analog signals into digital I and Q
signals. The subsequent demodulation operations are then performed digitally.

The second method makes use of the bandpass sampling concept introduced in
Chapter 3. In this case the signal is still on a carrier but is in digital form.

The most common situation is an Fs/4 system where the carrier frequency is 1/4
the digital sample rate as described in Chapter 3. After the I/Q down conversion, we
need a low pass filter to eliminate the sum frequency term at 2f0. This filter band-
width needs only to be great enough to pass the signal without harm. There is
another important consideration. Suppose the system sample rate is 100 Msps, and
the required bandwidth is only 1 MHz. Then, by our discussion on Nyquist sam-
pling, we are over sampled by factor of 50. One way to reduce the sample rate would
be to simply decimate the filtered data stream by that amount. This is easy, but not
smart. We are throwing away 49/50 or 98% of the computed filtered data. The solu-
tion is a decimating filter that only calculates the required data. This is an enormous
savings in the simulation execution time.
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7.2.1 CIC Filter

The cascaded integrator and comb (CIC) filter is a popular filtering technique that
has been implemented in many forms. The idea is simple and is based on the struc-
ture shown in Figure 7.2. The structure is a series of digital integrators followed by a
decimate-by-M operation, followed by an equally long series of equally long digital
derivatives, and finally a compensating filter.
Relative to the output sample rate, the frequency response of the filter is

( ) ( ) ( )[ ]H f f f f Mfs s

N
= sin sinπ π

where N is the number of integrators/derivatives. M = 2 in Figure 7.2. The compen-
sating filter is used to flatten out this response in the pass band.

7.2.2 Polyphase Filter

The polyphase structure is best presented by a direct example, specifically a deci-
mate-by-2 FIR filter. The general output y to an input x processed by a filter h is the
convolutional formula

y h xk p k p
p

N

= +
=

−

∑
0

1

Term by term, this expression, after deleting every other output, becomes

y h x h x h x h x

y h x h x h x h x

y h x

0 0 0 1 1 1 2 0 3

2 0 2 1 3 1 4 0 5

4 0

= + + +
= + + +
= 4 1 5 1 6 0 6+ + +h x h x h x

K

For simplicity we used an N = 4 tap FIR filter (which does not effect the results),
and we have omitted the odd values of y since we are decimating by 2. From the
equation above, we see that the even numbered filter taps only see the even num-
bered data values. In the same way, the odd taps only see the odd data values. This
suggests that we can arrange our processing as shown in Figure 7.3

This idea can be extended for higher order decimation. For M = 4 the demodu-
lator would split the data in four paths, with each path being filtered by 1/4 of the
coefficients. This idea can be extended for higher orders of decimation.
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7.2.3 Half Band Filter

A half band filter is defined through the relation

( ) ( )H z c z f z= + −1 2

The constant c is usually taken to be c = 0.5. The first observation is that except
for n = 0, all the even order coefficients are zero. If we are clever, we can perform the
filtering without blindly multiplying by them. The second feature is that the transfer
function has symmetry about the frequency Fs/4. Figures 7.4 and 7.5 show these
features.
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From Figure 7.5, we see that the filter transfer function is approximately a brick
wall at Fs/4 = 25 Hz in this case. As the number of filter taps increase, the wall
becomes more perfect. Using the polyphase concept just described and the fact that
every other tap equals zero, we can implement an extremely efficient decimate-by-2
filter. If further sample rate reduction is required, we can just add another such filter
(with the same coefficients) to the output of the first, and so on.

7.3 Offset Parameter Recovery

In order to demodulate the signal, the receiver must acquire three parameters from
the received signal. First is the unknown frequency offset ∆f, which can be caused by
Doppler shifts due to motion, or the fact that the transmitter oscillator is not exactly
equal to that of the receiver. Second is the unknown phase α relation between the
transmitted and received signals. Even in a perfect world with absolute frequency
control, the phase as seen by the receiver is shifted from that of the transmitter by a
= 2πf0τd, where τd = d/c is the transmission delay. Finally we need timing informa-
tion. Where does an information bit or data block begin and end?

7.3.1 Frequency Offset

As pointed out in Chapter 1, in the I/Q down conversion process the down convert-
ing frequency is not necessarily the same as the center frequency at bandpass. This
offset ∆f must be eliminated or at least reduced to the point where it will not affect
the demodulation.

Given an I/Q data stream, how can we calculate the associated frequency? By
definition,

( )[ ]
∆f

d

dt

d Q I

dt
= =

−
1

2
1

2

1

π

ϕ

π

tan

But the inverse tangent algorithm is time consuming, and it is generally avoided
if possible. To this end we further develop the definition
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This is a neat result. The final estimate is the average of the last equation over all
data points in a block of N. In some cases, such as MPSK, the envelope I Qn n

2 2+ is
constant and can be eliminated from the calculation.

The basic problem with the above methods is that the differentiation process is
noisy. The general expression for the signal including modulation m(t) is

[ ] ( )[ ]
( )

f d dt d f t m t dt

f dm t dt

= = +

= +

1 2 1 2 2

1 2

0

0

ϕ π

Thus, the frequency estimate has a noise term, which is the average of the modu-
lating frequency. Consider the simple case where the modulating signal is MPSK.
Then every time the calculation straddles a bit transition, there can be a jump dis-
continuity in the output, as shown in Figure 7.6.

Two other methods are based on the frequency domain PSD of the signal. The
first method is just to pick the maximum point of the PSD and choose that frequency
as a result.

Figure 7.7 shows the difficulty of using this process. The FFT is taken over a
finite set of signal data. Thus the PSD can be ragged as shown. It is possible to
smooth the result by widowing or by averaging shorter FFT segments of the data.

The second method is to integrate the PSD and choose the point where that inte-
gral is at 1/2 of the maximum.
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Figure 7.8 is the integral of the PSD of Figure 7.7. The integrator itself acts like
low pass filter. The rise of the curve is also somewhat ragged, but taking the 50%
point is usually more accurate.

A final method is the slope of the signal phase. In general, the output of the
phase detector can be written as

( ) ( )ϕ πt ft m t= +2 ∆

where m(t) is due to the modulation. But m t( ) = 0, so if we fit this phase to the best
straight line, the slope will provide the frequency estimate as shown in Figure 7.9. In
the MPSK case, we still get the jump discontinuities, but their effect is much less in
this calculation. Note: When using the arctan function to get the phase, you must
use the option that unwinds the phase. Normally the arctan will produce an answer
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between ±π, so without the unwinding operation the phase plot would look as
shown in Figure 7.10. The unwinding algorithm anticipates when the phase crosses
the ±π boundaries, and simply tacks on the appropriate value so the track is a
straight line.

The above algorithms are called open loop estimates. The results are obtained
by operating on a block of data in total. Another method, known as closed loop, is
to implement a tracking or automatic frequency control (AFC) loop as shown in Fig-
ure 7.11. Figure 7.12 shows the error function as the loop locks.

7.3.2 Data Timing

Now that we have removed the frequency offset, the next step is to obtain bit sync,
or where the data transitions occur. Figure 7.13 shows a block diagram of such a
tracking circuit.
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This is called an absolute value type loop. An error signal is obtained from the
input data from

( ) ( ) ( )e s t dt s t dt
T

T

T

τ τ τ= − − −∫ ∫
0

2

2

where τ is the unknown offset with respect to t = 0. Clearly, if τ = 0, e(0) = 0 as well.
Figure 7.14 shows the error function as the loop locks.

Figure 7.15 shows the initial timing mismatch between the sampler and the
matched filter output, and Figure 7.16 is the same plot only when the loop is locked.
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7.4 Phase/Frequency Recovery

In Section 7.3.1 we showed methods for obtaining the frequency of a modulated sig-
nal. These algorithms all fall into the category of wideband AFC techniques. In this
section we describe phase frequency acquisition techniques based on a phase error
approach.
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7.4.1 BPSK

For BPSK the commonly used method is the Costas loop. The idea is quite simple.
Consider a BPSK signal in the form. The basic block diagram is shown in Figure
7.17.

Figure 7.18 shows the loop locking onto the proper input frequency offset.
Figure 7.19 shows the I channel signal as the loop locks, and Figure 7.20 shows

the a channel being rotated out.
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7.4.2 QPSK

For a QPSK signal, the trick used for the Costas loop (that I*Q is independent of the
modulation) no longer works since there are four phases. One possibility is to
extend the idea of the squaring loop to a fourth power loop. This will produce a car-
rier at four times the nominal signal frequency. While this works analytically, in
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practice it forces the system sample rate up by that same factor so as to not alias the
recovered tone. This is not a good thing.

A very effective variant on the Costas idea is to compute an error signal based
on the relation

( ) ( ) ( ) ( ) ( )e t I t Q t Q t I t= −

Figure 7.21 shows the error as a function of the phase offset. Note that there are
now four stable tracking points as opposed to the two points in the Costas loop.
Again, either an absolute reference must be established, or the phases must be differ-
entially encoded at the transmitter.

Figure 7.22 is the general block diagram of the QPSK loop under discussion.
Figure 7.23 shows the loop locking onto the input frequency offset.

7.4.3 Decision Feedback

The QPSK algorithm is a special case of the more general concept of decision feed-
back. This method can be used on higher order MPSK or even QAM modulation.
The basic idea is to compute an error that is the difference between the actual
received I/Q signal, and the nearest neighbor constellation point associated with the
modulation format.

7.5 Conclusion

In this chapter we developed the techniques and algorithms required to demodulate
a signal and recover the information. The basic issue is to recover the carrier phase,
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unknown phase offset, and symbol timing. The starting point for all of these algo-
rithms is the down converted I and Q signals.
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C H A P T E R 8

Baseband Pulse Shaping
In Chapter 3 we noted that there is no such thing as a perfectly band limited signal.
This fact has serious consequences in many places. For example, frequency is an
economic commodity. The United States government regulates who can broadcast
what signals in what bands. During the wireless revolution, for example, a bidding
process was established to accommodate the various services providers. The highest
bidder received the license to transmit their signal. In order to maximize the return
on investment, the winner wants to serve as many customers as possible. In general,
the allocated bandwidth is segmented into channels with a given group of subscrib-
ers assigned to a particular slot. One of the main problems is to avoid one channel
from interfering with the next. This phenomenon is called adjacent channel interfer-
ence. Here is the problem: Suppose that the amount of power spectral density gener-
ated by a signal in slot A is, say, 80 dB below the slot A carrier (dBc) as it spills into
the next frequency slot B. Now suppose you are user B. You are talking to a trans-
mitter source quite far away while the user on slot A is much closer. Then it can (and
does) happen that the weak amount of spill from frequency slot A into slot B is
greater than the direct signal power in frequency slot B. Slot B is blocked by slot A.
This is called the near-far effect. Another system that suffers in the same manner is
air traffic control signals around an airport where one plane may be just in range of
say 100 miles while a second plane may be just touching down on the runway. A
third system is Army tactical radios where one transmitter may be over the hill
talking to a command post that has several different transmitters actively talking to
others.

In this chapter, we develop the commonly employed band limiting process for
digital transmission known as baseband pulse shaping.

8.1 Baseband Pulse Analyses

Consider the simplest representation of a digital waveform known as non return to
zero (NRZ) having the form

( ) ( )s t c h t kTk NRZ
k

= −∑
where ck = ±1, T is the symbol time = 1/symbol rate, and the NRZ pulse is given by

( )h t tNRZ = ≤ ≤

=

1 0 1

0 otherwise

119



Figure 8.1 shows a typical result for s(t).
Now let us examine the power spectral density (PSD) of s(t):

( ) ( ) ( )

( ) ( )

R f avg R f R f n

R f s t e dt

NRZ n n n
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jft

= 
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In the above, the avg operation is over all possible combinations of the data bits
ck. Under the assumption that these bits are statistically independent, the final result
for the PSD is

( ) ( )[ ]R f fT fTNRZ = sin π π
2

Figure 8.2 is a plot of this function for T = 1.
Note that this spectrum dies off very slowly beyond f = 1/T. A good system num-

ber to remember is the relative power of the first spectral lobe at f = 3/2T with
respect to the PSD evaluated at f = 0. The result is –13.8 dB. At the second lobe at f =
5/2T, the power drops to only –17.9 dB. To put this into some perspective, consider
two transmitters whose frequencies are 5/2T apart. Now assume that the RF propa-
gation power dissipates as 1/distance2. Then for two equal power signals, at a rela-
tive distance up to a factor of 7.88, the second side lobe power of the stronger signal,
slot A, will equal or exceed the direct power in slot B. This is shown in Figure 8.3.
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So we see that the NRZ pulse has an energy spectra that splashes all over the
place. What we desire is a PSD that is absolutely confined to some bandwidth B.
What happens if we reverse the role of the NRZ pulse and its corresponding sinc
function spectra? Then the pulse shape p(t) is given by

( ) ( ) ( )h t t T t Tcsin sin= π π

Then the spectral occupancy is
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( )R f f TSINC = =

=

1 1 2

0 otherwise

This is great except, as pointed out in Chapter 3, the sinc function is infinite in
extent and does not exist in the real world. This means that to realize this function it
must be truncated at some finite value

~
T. Now the sinc function falls off very slowly

as 1/t, so it takes a large
~
T to avoid serious degradation from the optimum perfor-

mance. This is the dual statement to the slow frequency roll-off of the PSD of the
NRZ pulse.

8.2 The Raised Cosine Pulse

There are many possible choices for p(t) which serve as a good compromise between
the two examples just considered. The most popular is the raised cosine pulse given
by

( ) ( ) ( ) ( )h t c t T t T t TRC = −sin cos πα α1 4 2 2 2

where 0 1≤∝≤ is the roll of or excess bandwidth factor. The PSD of this pulse is

( ) ( )
( ){ }( ) ( ) ( )

R f f T

T f T a T f T

RC = ≤ ≤ −

= − − − ≤ ≤ +

=

1 0 1 2

5 1 1 2 1 2 1 2

0

α

π α α. sin

otherwise

When α = 0, this function reverts back to the sinc function, which has a maximum
bandwidth of 1/2T, which is the smallest possible. When α = 1, the maximum band-
width is 1/T, which is double the minimum value, giving rise to the term excess
bandwidth. Figure 8.4(a) shows this pulse shape for a typical roll-off factor of α =
0.3, and Figure 8.4(b) shows the corresponding PSD.

The observant reader will note that hRC(t) is just as unrealizable as the sinc func-
tion. So what have we gained? The answer is that pRC(t) falls off in time as 1/t 3, which
is much faster than the 1/t roll-off for the sinc function. Thus, while still necessary,
the truncation can be accomplished for a much smaller time duration of the wave
form. Figure 8.5 shows the overlaid spectra for three cases with a data rate of 10 Hz.
The first is the sinc arising from the NRZ used as a reference. The second is the spec-
tra from the sinc(t) function which has been truncated to ±10T. The third is the spec-
tra of the raised cosine pulse truncated to the same degree. Now, in the nonexistent
perfect world, the spectra of the sinc pulse would be constant to .5 Hz and zero
beyond (a brick wall filter). In the same manner, the RC spectra would smoothly
role off. What Figure 8.5 shows is the sinc pulse spectra starting to drop at 5 Hz, but
then splattering out. The RC spectrum, at the beginning, emulates the theoretical
curve, but it also splatters out in frequency. Note that the RC splatter is much lower
that the sinc splatter. This is because for the truncation time 10T, the RC impulse
response is much lower in amplitude (less residual loss) than the sinc pulse. Figure
8.6 shows an overlay of these two time functions.
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How do you simulate a signal with a raised cosine pulse, or any other pulse
shape for that matter? The answer is obtained by observing the following relation
for arbitrary pulse shape h(t):

( ) ( )

( ) ( )

s t c h t kT

c t kT h t

k
k

k
k

= −

= −

∑
∑ δ *

What this says is that you generate a series of impulses separated by time T, of
proper weight ck, and run them into a filter whose impulse response is h(t). Figure
8.7 shows this operation, and Figure 8.8 shows the resulting pulse train required to
impulse the baseband pulse filter.
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What if impulses are hard to come by, and what happens when you just run the
NRZ waveform into the pulse filter? In that case the output spectrum H(f) will be
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the product of the filter spectra R(f) and the sinc function, which is the transform of
the NRZ pulse. It follows that the ISI properties for the RRC filter are destroyed.
There is one trick available. Insert the inverse of the sinc filter in the processing
chain to recover the desired spectra. In the Laplace domain, the sinc filter has the
transfer function

( ) [ ] ( )H s e dt e sst
T

sT= = −− −∫ 1 1
0

so the inverse function has the transfer function

( ) ( )H s s e sT− −= −1 1

Figure 8.9 shows how to simulate this function. The “s” is a derivative, and the
denominator is a feedback with a T-second delay. This model only works in the sim-
ulation if the sample rate is an integer multiple of (commensurate with) the data rate
T.

8.3 Intersymbol Interference and Eye Diagrams

Let us return to the basic expression

( ) ( )s t c h t kTk
k

= −∑
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What we would like to have happen is for s(kT) = ck. From the above expression,
this can only happen if

( )h kT k= ≠0 0

For an arbitrary pulse shape, h(t), this might not be the case, and the actual
result would be

( ) ( )s c c h kTk
k

0 0
0

= +
≠

∑
What is happening is that the attempt to recover the signal at t = 0 is corrupted

by the other data values via the impulse response of h(t). This phenomenon is called
intersymbol interference. It is a major problem in many communication systems.

To continue the discussion we introduce the concept of an eye diagram. Suppose
we generate a signal using the raised cosine pulse and print it on a long piece of
transparent paper. On this paper we make marks at time intervals of T seconds. We
fold the paper up like an accordion using these markers so that each segment lies on
the other and is visible. Figure 8.10 shows such a plot but with the markers set at 2T
= 0.2 sec for a better visual presentation.

The shape of the resulting figure is the basis for the name. Another way of gener-
ating the eye diagram is with an oscilloscope. A T-second clock generates both the
signal and the sweep trigger. By setting the scope persistence up, the same picture
will emerge.

The most striking feature of the eye diagram curve of Figure 8.10 is the sharp
convergence of the eye to two points (±0.1) at multiples of T = 0.1 sec. This is a man-
ifestation of the fact that the raised cosine pulse, like the sinc pulse, is equal to 0 at
multiples of t = kT, k ≠ 0. Thus, at the proper sampling instant, only one pulse con-
tributes to the output, and the rest disappear from the result, producing a condition
with no ISI.

To see how ISI can be introduced in a communication system, consider Figure
8.11, which shows a basic communication link. The transmitted signal is s(t) as
before. At the receiver there is some form of receive filter, usually one that is
matched to the transmit filter. The resulting received signal r(t) is
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( ) ( ) ( )
( ) ( )

( )

r t s t h t

c h kT h t d

c g t kT

k k

k k

=

= − −

= −
∫∑

∑

*

τ τ τ

Figure 8.12 shows the corresponding eye diagram for r(t), where the basic pulse is
g(t) = hRC(t)*hRC(t).
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What Figure 8.12 shows that the result of convolving the RC filter with itself
introduces ISI, even though the individual components do not. The ISI is manifested
in the eye starting to close at T = 0.1, and there are no longer two simple sharp points
at T = 0.1 sec.

8.4 The Root Raised Cosine Filter

How do we fix the dilemma just derived for the RC filter that produces ISI when
used in the receiver, as a matched filter to the one in the transmitter? The solution
adopted by many wireless standards such as IS-136 and others is to split the RC fil-
ter into two haves, and put one half in the transmitter, and the other half in the
receiver. The resulting filter is the raised root cosine (RRC) filter defined in the fre-
quency domain as follows:

( ) ( )
( ) ( )

H f H f

H f H f

RRC RC

RRC RC

2 =

=

This gives rise to the name RRC. A corollary to this development is

( ) ( ) ( )h t h t h tRRC RRC RC* =

The impulse response of the RRC filter is somewhat complicated as given by

( ) ( ) ( ) ( )[ ] ( )[ ]
( )

h t k t t t t T

k T T

RRC = + −

= = ± ∝

+ −

±

4 4 1

1

2
α πα

π π

Τ ∆ ∆

∆

cos sin

/

As before, this function is not realizable either and is subject to the same issues
regarding truncating to some finite time that is sufficient.
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In Figure 8.13, we show the eye diagram of a signal generated by the RRC filter.
Note that there is considerable ISI at this point. But we do not care because this is
not the signal that is used to recover the information.

The transmit and receive signals for this case are

( ) ( )

( ) ( ) ( )
( ) ( ) ( )

( )

s t c h t kT

r t s t h t

r t c h t kT h t

r t

k RRC
k

RRC

k RRC RRC
k

= −

=

= −

=

∑

∑
*

*

( )c h t kTk
k

RC∑ −

Figure 8.14 shows the result of the convolution of the RRC filter with itself.
Compare this with Figure 8.10.

Table 8.1 summarizes the ISI properties of the various pulse shaping filters con-
sidered here.

8.5 Conclusion

In this chapter we introduced the concept of baseband filtering. The object of these
filters is to confine the occupied bandwidth of a signal so it does not splatter into
adjacent bands. The RC filter was introduced as a commonly used filter. An analysis
of optimum matched filter processing with the RC filter leads to the concept of ISI
and the eye diagram. The RRC filter was derived as half of an RC filter placed in
both the transmit and the receive side of a communication link. The RRC combina-
tion accomplishes two basic goals in communication system design. First, they act
as a matched filter pair for optimum SNR detection. Second, the filter combination
does not produce ISI.
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Table 8.1 ISI properties of Baseband Filters

Pulse Shape
ISI at
Transmitter

ISI After
Matched Filter

Rectangular No No

Sinc No No

Raised cosine No Yes

Root raised cosine Yes No



C H A P T E R 9

Bit Error Rate Calculations
In digital communications the near universal figure of merit for a system is the BER.
As a function of the signal to noise or interference, what is the probability the data
bit sent was received in error (i.e., 0 → 1, or 1 → 0)? A related measure that is some-
times used is the message error rate (MER). For example, the sent message STOP is
not decoded correctly, but decoded to another possible message like GO. In this
chapter we will develop the concept of a bit error and how to set up accurate BER
measurements that run in the least time possible.

9.1 The BER Measurement Process

Figure 9.1 shows a simple overall statement of the BER process.
A data source X1(k) at R bps is encoded, modulated, and transmitted. The

medium between the transmitter and receiver is known as the channel. The channel
has two effects on the signal. First, it can simply add noise and other interference,
and second, the signal can bounce off of objects and create a fade. The receiver
demodulates the signal, establishes the proper timing for detection, and finally puts
out a second data stream X2(k) of rate R, which the receiver believes to be the actual
message. The BER is the bit-by-bit comparison of this data stream with the input
stream. The measurement algorithm is the XOR logical operation

( ) ( ) ( )Y k X k X k= ⊗1 2

This is the digital equivalent of a multiplication as shown in Table 9.1.
For a run of N bits, the BER is computed as

( )BER Y k N
k

N

′ =
=

−

∑
0

1

So the first decision to be made is how big N must be. The larger N, the longer
the simulation must run. To answer this, we note that the BER expression above is a
statistical quantity. Due to the randomness of the noise and other factors, 10 runs of
N trials will lead to 10 different results. Which one is the absolutely correct answer?
Actually, none of them. That is the meaning of the accent mark on BER′; it is an esti-
mate of the true BER. The operation on each trial produces a 1 with probability p =
true BER, and a 0 with probability 1 − p. This type of statistical system is called the
binomial distribution. From probability theory, the mean (expected value), µ, and
standard deviation, ó, of the average on N such variables (i.e., BER′) is
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( )
( ) ( )

Ex BER p BER

std BER p p N

′ = = =

′ = = −

µ

σ 1

Thus, the value measured value BER′ becomes the true BER in the limit of large
N, and the standard deviation of this estimate goes to 0. In accordance with the law
of large numbers, the probability distribution of BER’ can be written in the form

( ) ( )p x eBER
x

′
− −= µ σ πσ

2 22 22

From this form, one can use standard hypothesis testing choose N such that the
probability of the measured result is within, say, 0.001 of the true value is a pre-
scribed amount, say, 99%. Figure 9.2 illustrates this concept. The system was set for
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Table 9.1 The XOR
Operation

X1(k) X2(k) Y(k)

1 1 0

1 0 1

0 1 1

0 0 0



p = 0.1 and N = 100. The histogram overlays the actual histogram of the BER result
variation for 1,000 trials, overlaid with the corresponding Gaussian formula.

Like many nice results, this has some problems. In particular, we must know p
to begin with, which we usually do not. One could do a relative short run to get an
estimate. In the end result, there is the compromise between run time and accuracy.
The author usually starts with N = 10, and modifies it if more accuracy is needed.

9.2 System Group Delay

Many of the operations commonly used in communication systems have a process-
ing or group delay. The group delay has several causes in a simulation. One source
is the filter group delay as described in Chapter 6. If there are several filters in tan-
dem, the group delay adds. Block forward error correcting (FEC) coding serves as a
second example. The FEC encoder takes in a group of bits k, and calculates an out-
put code word with N bits. Suppose that the input block covers T seconds. Then for
the first T second, the encoder is gathering the data. At T seconds, the encoder stops
and calculates the N output bits. These bits are presented to the system from T < t <
2T seconds. At the decoder, the procedure repeats itself in reverse. The FEC decoder
must know where a block of bits begins and ends. This is part of the synchroniza-
tion process. However, once found, the decoder grabs T seconds of data and halts
the simulation again while it decodes the k recovered bits. The overall delay is now
2T. Others include bit-to-symbol converters, and Gray encoders.

How, then, do we calculate this group delay? One choice would be to calculate
the contribution of each element in the system, and add them up to get the total. In a
large system this procedure would not be remotely feasible even if you could find
and calculate which element contributed what delay. A simple and effective way is
to simply cross-correlate the input data stream with the output. The time location of
the maximum of this cross-correlation is the required offset. Figure 9.3 (a–c) shows
this concept. The system group delay is 5 data bits. The cross-correlation peak is at
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five samples. Note, it does not matter whether you do a*b or b*a. The difference
between these two results is just the algebraic sign on the result. But, from the sys-
tem, we know that the input must be delayed to match the output, so only the abso-
lute value of the peak location is required.

Referring back to Figure 9.1, the group delay is first set to 0. The input and out-
put data streams are cross-correlated (with all noise and interference removed) and
the location of the maximum is determined. The BER that is reported at this point
should be about 0.5. Now enter this offset and repeat the BER and cross-correlation.
The peak of the cross-correlation should now be at 0 offset, and the BER should be
0. It is wise in these measurements to delay the BER measurements by at least the
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group delay to allow for initial system transients and to give time for other processes
to settle down to a steady state.

In this example it was assumed that the system delay was exactly 5 bits in
length. This means that the input data is on time makers 0, T, 2T, …, and the out-
put data is on time makers 4T, 5T, ..., and so on. But this is not always the case. In
fact, the output timing, while spaced by T, could be offset in phase such as 4.1T,
5.1T, …, and so on. This can happen in several ways: if the system has a filter with
group delay, ôg, which is not a multiple of T, or artifacts may be associated with the
processing delay of various operations.

The FEC is again a good example. Consider a system with T = 1, using an triple
error correcting FEC with k = 12 and N = 23. So an input and output block is 12 sec-
onds long. But the output bits are spaced 12/23 seconds apart. From Chapter 5 we
saw that to detect an NRZ data bit, an integrate and dump matched filter with inte-
gration time 12/23 seconds long is required. Thus, the start of the code word at the
receiver is shifted by this amount, and the output bits, will occur at times T = 12/23,
1 12/23, 2 12/23. The output data bit stream will be shifted by the same amount.
One solution to this problem is to relabel the output time axis to match the input
time axis. These idiosyncrasies must be carefully observed if the simulation is to be a
success.

9.3 Eb/N0 Calibration

The nearly universal independent variable for measuring BER is the energy per bit,
as described in Chapter 5. We now turn to how to calibrate this parameter in a sim-
ulation. There is more than one way, of course, but the method presented here is
easy to understand and implement. There are two basic simulation types to consider
here.

9.3.1 Physical RF World Simulation

In this type of simulation, exact account is taken of the real physical power levels of
the system as well as the physical noise levels encountered at every step in the
reciever. In short, you want to know what power level (in dBm) is required to meet a
certain goal. From link equations, this power level translates to communication
range. Figure 9.4 shows a typical block diagram of such a simulation.

Start with the white Gaussian noise power density N0 (W/Hz). From thermody-
namic considerations, we know that N0 = kT, where k = 1.38 × 10–23 W/HzK is
Boltzman’s constant, and T is a suitable chosen reference temperature commonly T
= 290K (to make kT a nice round number). This gives

( )( )N W Hz K K

W Hz

mW Hz

d

0
23

21

18

138 10 290

4 10

4 10

174

= ⋅

= ⋅

= ⋅
= −

−

−

−

.

Bm Hz
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The last representation is good to remember as it is frequently used in system
sensitivity and noise figure calculations.

Generating a Gaussian noise source with a specific N0 is accomplished by the
relation

N Rfs0
22 = σ

where fs is the system simulation sample rate, σ2 is the variance of the Gaussian noise
source, and R is the resistance of the power measurement system, usually 50 ohms.
This result is called Parceval’s theorem, which states that the power of the signal in
the time domain is equal to the power in the frequency domain. When calibrating
the SNR, be sure that both the noise and power are measured with respect to the
same R.

The average power transmitted Pav is calculated as

( )P s t dt Tav

T

= ∫ 2

0

where s(t) is the final modulated carrier signal. The measurement is made just before
any noise or interference is added. The integration time T is long enough to ensure
an accurate result. This operation needs only to be performed once when the simula-
tion is being set up.

In some cases, the calculation of Pav can be done almost by inspection. Any con-
stant envelope signal, of amplitude A (zero-to-peak) (such as MFSK), a pure tone, or
MPSK without any baseband filters, will have

P A Rav = 2 2
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With the signal and noise calibrated, at some point the BER calculation can be
made. The power level is controlled to some value for each run, and the BER is cal-
culated. A plot is then made of BER versus Pav.

9.3.2 Standard BER Runs

All digital communication formats such as BPSK and QAM have well-known per-
formance characteristics. They are plotted BER versus the energy per bit Eb/N0.
Recall from Chapter 5 that the output of a matched filter is 2Eb/N0, so these plots
essentially give a baseline performance. It is not uncommon to have a system with
a specification, for example, that QPSK modulation shall be employed, and the per-
formance is to be within 1 dB of the optimum performance curve. So what we
need is to set up the simulation parameters for the noise accordingly. The basic
relation is

E N P N Rb av b0 0=

where Rb is the basic system bit rate (not the symbol rate). Pav is the same average
power as discussed in Section 9.3.1:

( ) ( )[ ]P I t Q t dt Tav

T

= +∫ 2 2

0

Now that we have an initial calibration, we can vary Eb/N0 to any desired value
in one of two ways. We can increase the signal power by inserting a gain element
calibrated in decibel power right after the signal s(t) is formed. We can also decrease
the noise power in a similar way, only with the gain value being negative decibels.
The author prefers the second method. Many elements in a system may be ampli-
tude sensitive. If there are nonlinear elements, then the spurs will increase with
increased power. The bandwidth (time response) of a phase locked loop is also
input gain sensitive. Either method works, so you can choose the one best suited to
your needs.

9.4 Conclusion

This chapter was devoted to the important concept of BER measurements. The BER
is the near universal figure of merit of a communications link. The main issues were
the calibration of the energy per bit Eb/N0, and establishing the delay through the
system.
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Channel Models
In Chapter 1 we defined the channel to be the media that the signal passes through
from the transmit antenna to the receive antennas. One major component that
describes the channel is the signal fading phenomena. As shown in Figure 10.1, the
transmitted signal can bounce off objects, each reflecting energy to the receive
antenna. The sum total of all of these reflections can cause the resulting signal to
lose relative power by cancellation, either in total or at select frequencies. We now
develop in more detail this concept and some methods of simulation.

10.1 Flat Fading

Consider a transmitted signal of the form

( ) ( ) ( )[ ]s t A t f t= +sin 2 0π ϕ

Now suppose that this signal bounces off many object and reflects back to the
receiver. Each path has a delay τ. The difference between the maximum and mini-
mum delay is called the delay spread. The net received signal r(t) is

( ) ( ) ( ) ( )[ ]r t s t A t f t t fk k
k

k k k
k

= − = − + − −∑∑ τ τ π ϕ τ π τsin 2 20 0

The concept of flat fading is based on the following observation. If a signal is
simply passed through a delay line, then the output can be written as

( ) ( )[ ]s t S f e e dfd
jf jft= −

−∞

∞

∫ 2 2π τ π

Now if the spectrum S(f) is confined to a bandwidth B << 1/τ , the exponential
term in the bracket is essentially constant over the active integration, giving

( ) ( )[ ]
( )[ ]
( )

s t S f e e df

S f e e df

S f

d
jf

B

B
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jf

B

B
jft

=

=

=
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∫

∫

2 2

2 2

π τ π

π τ π
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⋅
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For all practical purposes, the delay does not affect the modulation component
of the signal except for a possible gain factor αk. With this in mind, we can rewrite
the fading signal as

( ) ( ) ( ) ( ) ( ) ( )r t A t f t f f t fk k k k
k

= + − + ∑sin cos cos sin2 2 2 20 0 0 0π ϕ α π τ π ϕ α π τ
k
∑





The trick now is to evoke the law of large numbers to the summation terms. In
particular, the PDF of a sum of independent variables becomes Gaussian in the limit
of a large number of terms, regardless of the PDF of the individual components.

The final expression for the fading signal now becomes

( ) ( ) ( ) ( )( ) ( ) ( )( )[ ]
( ) ( ) ( )

r t A t a t f t t b t f t t

A t M t f t t

= + + +

= + +

sin cos

sin

2 2

2

0 0

0

π ϕ π ϕ

π ϕ θ( )( )t

( ) ( ) ( )
( ) ( ) ( )[ ]

M t a t b t

t a t b t

= +

= −

2 2

1θ tan

where a(t) and b(t) are zero mean Gaussian signals.
So the net result of the fade is to amplitude modulate the signal with M(t) and

introduce phase shift θ(t). The term “flat” fading now refers to the fact that the
whole of the signal breathes up and down like a time varying gain function. Such a
function acts equally (flat) on all frequency components of the original signal.
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Owing to the fact that a(t) and b(t) are Gaussian variables, the amplitude distribu-
tion of M(t) is calculated to be

( ) ( )

( )

( ) ( )

P x y e

P r e

P r P r rd

x y

r

,

,

,

=

=

=

=

− +

−

∫

2 2 2

2 2

2 2

2 2

0

2

2

2

σ

σ

π

πσ

θ πσ

θ θ

re r− 2 22 2σ σ

This function is the well-known Rayleigh distribution. The distribution of the

phase angle θ(t) is uniform [0, 2π].
Simulation of flat fading depends on whether the simulation is baseband, or RF.

Figure 10.2 shows the baseband case.
In Figure 10.2 the Gaussian noise is filtered to some bandwidth B to control the

fade rate.
Simulating a flat fade when using an RF simulation (i.e., the signal is on a car-

rier) is somewhat more complicated. Remember, the model affects both the ampli-
tude and the phase of the signal. If the signal is of the form

( ) ( ) ( )[ ]s t A t f t ti = +sin 2 0π ϕ

we need to generate the quadrature signal
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Figure 10.2 Simulation of a fading channel at baseband.



( ) ( ) ( )[ ]s t A t f t tq = +cos 2 0π ϕ

in order to proceed. Figure 10.3 shows the overall process.
The Hilbert filter is the standard method for producing the quadrature of a sig-

nal. Essentially it shifts all frequencies by 90 degrees. The delay τ is required to
match the group delay introduced by the filter.

10.2 Rician Flat Fade

In the Rayleigh fade model, all of the energy reaching the receiver is the result of
some bounce. There is no direct transmitter to receiver path. The Ricean model adds
this direct path. Figure 10.1 shows this model, where there is a direct path and a
series of bounces from the base station to the mobile subscriber. The amplitude dis-
tribution is a little more complicated now:

( ) ( )[ ]

( ) [ ]
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r A rA
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2
σ θ σ

π

σ

θ πσ

σ

cos

( )2 22πσ

where I0(x) is the modified Bessel function of order 0, and A is the amplitude of the
direct path. In the limit that A goes to 0, we recover the original Rayleigh distribu-
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tion. In this model the parameter K = (A/σ) is used to normalize the ratio of the direct
to reflected power. K = 0 is a pure Rayleigh channel, and K = ∞ is a pure direct path.

10.3 The Jakes’ Model

So far, the time dynamics of the channel have been represented by simply filtering
Gaussian noise to the appropriate bandwidth. We now turn to the simple and often
used model, from Jakes, shown in Figure 10.4.

In this model a mobile subscriber is traveling with a velocity v with respect to
the base station tower. It is assumed that there is a large number of scattering paths
that reach the mobile unit from all directions, as shown. Now the motion of the
received path causes a Doppler shift depending on the angle of arrival θ with respect
to the motion. The Doppler shift of a signal is given by the equation

( )f f v cd = 0 cos θ

From this, we see that fd = 0 for arrival from above and below, fd = −f0v/c for
arrival from behind, and fd = +f0v/c for arrival from the front. The range of frequen-
cies in a mobile channel is called the Doppler spread. The PDF of the Doppler
spread in this case is v given by

( ) ( )S f f f

f v f c

d

d

= −

=

1 1
2

0

The issue now is how to generate a fading signal [I, Q] that has this distribution.
A commonly used model, from Jake, is shown in the following equations:
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v

Figure 10.4 The Jakes’ mobile multipath model. It is assumed that the reflection paths are
equally distributed from a circle around the receiver.



The larger the number of terms, N, the better the representation will be. A value
of N = 10 or so is generally sufficient. Figure 10.5 shows the actual S(f)
obtained with N = 10, and Figure 10.6 shows the corresponding Rayleigh amplitude
PDF .

The result is a good approximation to the Rayleigh distribution.
Observe that the [I, Q] of this representation is purely deterministic. There is no

random variable parameter. One way to fix this is to add a random phase to each of
the sinusoidal terms.

10.4 Frequency Selective Fading

Consider a channel with a direct and single reflective fade path that inverts the sig-
nal. The difference in the time of arrival of these two paths is τ. The channel model in
the frequency domain is simply

( ) ( )
( )

h t t

H f e jf

= − −

= −

1

1 2

δ τ
π τ

Clearly, if fτ is an integer, there is complete cancellation. Figure 10.7 shows the
result of this action on a PSK signal spectrum.
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Figure 10.5 Doppler spectrum from Jake’s model using N = 10 terms.



The data rate is 10 Hz, and the path delay is 0.15 sec. The frequency cancella-
tions occur at 0, 6.67, 13.33 Hz, as shown in Figure 10.7. This notch phenomenon
gives rise to the term frequency selective fade.
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The model for frequency selective fade is based on a tapped delay line structure,
shown in Figure 10.8. The basic idea is to combine several frequency flat channels
separated by some time difference.

The gain in each arm is actually represented by frequency flat dynamics as
already described. The wireless industry has performed extensive field tests to arrive
at realistic fade models. Table 10.1 shows the standard model cited in the IS-95
CDMA specification.

10.5 Effects of Fading on BER Performance

How does fading affect the BER performance of a communication channel? The
received signal power is breathing up and down due to the fading. In a slow fade sit-
uation (i.e., one where the fade rate is less than the symbol rate), one can consider
the received signal to be constant over the symbol time. In this situation we can cal-
culate the resultant BER by taking the formula already derived for BER as a function
of SNR, and weight it against the probability of that SNR.

For the BPSK case, we showed in Chapter 5 that the BER is given by the formula

( ) [ ]P e Q E N e dub

E Nb

= = −
∞

∫2 20
2

2

2

0

µ π

Note that Eb = A2/2R. For a channel, the PDF of the amplitude A is given by

( ) ( )P A A A e
A A

=
−


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where A2 is the average of the square of the signal amplitude. The expression for the
fade rate Pfade of the BPSK channel is the weighted integral P(e) (which is a function
of A), against P(A)

( ) ( )
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P P e P A dA

P A A e dA e
A A

u

A N

fade
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∞
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This integral can be evaluated:
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Figure 10.9 plots this result against the nonfade BER.
Table 10.2 shows the results for this and several other cases in the limit of high

SNR.
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Table 10.1 IS-95 Cell Phone Channel Models

Model
Vehicle Speed
(km/hr)

Number
of Paths

Path 2 Power
Relative to
Path 1 (dB)

Path 3 Power
Relative to
Path 1 (dB)

Path 2 Delay
Relative to
Path 1 (usec)

Path 3 Delay
Relative to
Path 1 (usec)

1 8 2 0 N/A 3.0 N/A

2 30 1 N/A N/A N/A N/A

3 100 3 0 −3 2.0 14.5

nonfading

fading

BER PSK w/Fade

Eb/No (dB)

BE
R

1.00e-1

1.00e-2

1.00e-3

1.00e-4

1.00e-5

−3 −500.e-3 2 4.5 7 9.5 12

−3 −500.e-3 2 4.5 7 9.5 12

Figure 10.9 BER of a BPSK channel with and without fading. Note the severe performance pen-
alty of the fading case.



Note this very important observation: The performance difference for coherent
versus noncoherent transmission is a factor of two. This is one reason that in the
IS-95 wireless system, the base station transmits a signal that allows the receiver to
establish absolute phase reference permitting coherent reception. This is economical
in this case since it is a one-to-many transmission format.

10.6 Mitigating Fading

Given that fading is a bad thing, how do we mitigate its effects? There are two gen-
eral methods.

10.6.1 Equalizers

We just described the general channel model in the mathematical format

( ) ( ) ( )[ ]h t c t t tk k
k

= −∑ δ τ

where the coefficients ck(t) represent the Rayleigh fading, and τk(t) represents the
various path delays, which may be a function of time as well. Now, over a short
enough time span, these dynamic quantities can be considered constant. In this case
the channel is simply a filter. In the digital z domain, we can write the transfer func-
tion across this filter as

( ) ( ) ( )Y z H z X z=

where X(z) is the input data, H(z) is the channel transfer function, and Y(z) is the
resulting received signal.

What we want to do is insert a filter with some transfer function F(z) at the
receiver in order to mitigate the effects of the channel. The received waveform after
this processing is simply

( ) ( ) ( ) ( )Y z F z H z X z=

The objective is to make Y(z) = X(z), which implies that we choose this filter
such that

( ) ( )F z H z = 1
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Table 10.2 BER Performance in
Rayleigh Fading Channel

Modulation Type BER

Coherent PSK 1/4SNR

Coherent FSK 1/2SNR

DPSK 1/2SNR

Noncoherent FSK 1/SNR



A filter F(z) that accomplishes this goal is called an equalizer.
The basic form of a linear equalizer is taken as an FIR filter structure of the form

( )F z a zk
k

k

= −∑

and the whole of equalizer theory is how to choose the coefficients ak.
As an example, Figure 10.10 shows a block diagram of a seven-tap linear equal-

izer. The transmitted signal is binary ±1, which has been slightly filtered. The trans-
mission channel has a simple transfer function H(z) = 1 −0.5z–5. The system
simulation rate is set to be five times the data rate. Thus, for simplicity, the channel
delays by 1 data bit and adds back half of the value seen.

This operation introduces ISI into the system. In Chapter 8 we showed that the
eye diagram was a convenient method for investigating this phenomenon. Figure
10.11 shows the eye diagram of the signal after the channel H(z). Note that the eye
has four levels and is nearly closed.

In this example of Figure 10.10, the error signal ek at sample time tk is derived by
comparing the actual signal yk with the nearest possible actual data value equal to
±1. Thus the hard limiter is the proper mathematical operation. In a more compli-
cated system, such as MPSK, the signal, coefficients, and the error signals are all
complex entities. The error signal is then the difference between the instantaneous
I/Q values and the nearest member of the signal constellation.

The remaining problem is the computational algorithm that calculates the taps.
We have chosen a very well-known and simple method known as the LMS algo-
rithm, introduced by Widrow. The block diagram of the taps of Figure 10.10, which
implement this algorithm, is shown in Figure 10.12.

The mathematical calculation is given by the vector formula

[ ] [ ] [ ][ ]$ $ $a a e x
k k k k+

= +
1

2µ
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Figure 10.10 Block diagram of a seven-tap linear equalizer.



where [ $ ]a k = is the array of tap coefficients at step k; [ $ ]a k = is the array of tap coeffi-
cients at step k + 1; [ $ ]x k = is the array of input signals at step k; ek is error at step k =
[desired − actual] k; and µ is the loop gain constant.

As noted, the perfect equalizer will produce a filter of the form

( ) ( )F z z z z= − = + + +− − −1 1 1 5 255 5 10. . K

The first thing to note is that it would take an infinite number of taps to realize
this filter; thus, the seven-tap version here will only correct the channel to some
point. Figure 10.13 shows the evolution of the taps as the algorithm converges.
Table 10.3 summarizes the theoretical versus actual coefficients for the first three
taps.

Finally, Figure 10.14 shows the eye diagram after the equalization.
There are several other equalizer structures in addition to the LMS example

given above.
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CMA Algorithm
This system works on any constant envelope or modulus (power level = I2 + Q2 =
constant) signal such as MPSK and MFSK. The error in Figure 10.11 will simply be
the difference between the actual power level and a fixed reference.
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Table 10.3 The Theoretical
Versus Actual Coefficients

Tap
number Perfect
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1 1 1.04

2 0.5 0.625

3 0.25 0.132

0 200e-3

Time in seconds

1.5

1

500e-3

−500e-3

−1

−1.5

−2

A
m

p
lit

ud
e

0 200e-3

Figure 10.14 Eye diagram after the seven-tap equalizer. The eye has opened up.



Decision Feedback Equalizers
In the transversal structure of Figure 10.11, there is no coupling of the data decisions
back into the equalizer algorithm. In the decision feedback equalizer (DFE) the data
decisions are fed back into the equalizer, and second set of weights is used to
improve the performance. In effect, the equalizer now has the z domain representa-
tion of

( ) ( ) ( )H z N z D z=

where the numerator N(z) is derived from the transversal portion, and D(z) is
derived from the feedback portion of the equalizer.

Zero Forcing Equalizer
As noted above, the effect of the channel is to introduce ISI into the detected sym-
bols. Now suppose we transmit a signal with a single raised cosine pulse p(t)
described in Chapter 8. We saw that this filter introduces no ISI since p(kT) = 0 at all
multiples of the data rate except at the center k = 0. At the receiver we sample the
received signal x(t) at time kT, Xk. Because of the channel ISI, Xk is generally not
equal to zero. The idea of the zero forcing equalizer (ZFE) is to choose the tap
weights that enforce the original zero ISI condition. For a three-tap ZFE, the equa-
tions are
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This is a system of three equations in three unknowns, which can be solved for
the tap weight vector [a]. In matrix notation we have

[ ] [ ][ ]
[ ] [ ] [ ]
I X a

a X I

=

= −1

The more taps used, the greater the accuracy of the filter.

Viterbi Equalizer
The Viterbi equalizer (VBE) is employed on the GSM/GMSK mobile cell phone sys-
tem. For severe interference environments such as cities, the fading occurred can be
quite significant. In addition, the dynamic environment due to the mobile receiver
motion requires constant updating of the channel. The GSM messages are config-
ured into slots 0.577 msec long containing 156.25 bits. In each slot there is a 26-bit
training sequence h(t), and two groups of 58-bit data sequences, plus guard bits and
nonmodulated guard time. If we denote the transfer function of the channel by H(t),
then the received training signal r(t) is simply the convolution

( ) ( ) ( )r t H t h t= ⊗
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At the receiver we correlate r(t) with h(t) to get the signal z(t)

( ) ( ) ( )
( ) ( ) ( )[ ]

z t r t h t

H t h t h t

= ⊗

= ⊗ ⊗

If we carefully choose h(t) such that [ ( ) ( )] ( )h t h t t⊗ ≈ δ , then z(t) is an estimate of
the channel

( ) ( )z t H t≈

The next step is to correlate all possible bit combinations that are correlated
with z(t). The receiver then compares the actual data sequence with this set in a trel-
lis decoder similar to the one used for the Viterbi error correcting algorithm detailed
in Appendix C.

10.6.2 Diversity

The basic idea of diversity is to get more than one “look” at the received signal.
Hopefully, each look will not fade at the same time. By combing these paths, a reli-
able channel is established. There are many possible diversity concepts:

• Spatial: If we have two antennas placed further apart than the carrier wave-
length, then the complex cancellation phenomena will be different for each
antenna position. For a mobile system, one antenna could be on the front of
the car, and the other on the rear.

• Polarization: It may be possible to use two orthogonal polarization receive
antennas: horizontal and vertical. They resulting signals may fade independ-
ently.

• Time: The individual paths of the delay line model have a different delay. If we
could resolve out these delays, then each path could be detected individually
and then combined.

• Frequency: The fade at one frequency may be entirely different than the fade
at another.

One of the primary uses of spread spectrum modulation techniques is to accom-
plish this goal. Recall that the correlation peak of a DSPN system is one chip wide.
Thus, if the received delay paths are greater than this chip period, they can be indi-
vidually demodulated. This is exactly the tack taken in the IS-95 CDMA wireless
system. Figure 10.15 shows a three-path block diagram of such a system. The gen-
eral term of this algorithm is a rake receiver. Each path is a finger of the rake.

What is the performance gain from the diversity? An analysis shows that for L
diversity paths, the probability of error is given by

( ) ( )( )P e P eL

L
≈ 1
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In the case of the three-finger rake system used by IS-95 BER out for a P1 = 0.1
we get P3 = 0.001. Furthermore, with coherent reception the gain is a factor of eight
better than for noncoherent transmission.

10.7 Conclusion

This chapter was devoted to what happens to the signal between the transmitter and
receiver. This medium is commonly called the channel. In modern wireless systems,
the fading nature of the channel dominates performance over the effects of AWGN.
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C H A P T E R 1 1

Nonlinear Amplifiers
In this chapter we describe methods for simulating the nonlinear behavior of RF
amplifiers. We include the traveling wave tube (TWT) amplifier commonly used on
communication satellites, and model a mixer spur chart.

11.1 Intercept and Compression Points

The simplest model of a nonlinear amplifier is given by the transfer function

y ax cx= + 3

where a is the linear gain term. The standard specification of the nonlinearity is
called the third order two-tone intercept point, IP3. To see what this means, we take
the input signal x as the sum of two equal amplitude sinusoids (tones)

( ) ( )x A f t A f t= +sin sin2 21 2π π

and see what y looks like. The result is

( ) ( )[ ]
( ) ( )[ ]

y a A f t A f t

c A f t A f t

aA

= +

+ +

=

sin sin

sin sin

sin

2 2

2 2

1 2

1 2

3

π π

π π

( ) ( )[ ]
( ) ( )[ ]

2 2

2 2

3 2

1 2

3 3
1

3
2

3 2
1

π π

π π

π

f t f t

cA f t f t

cA f

+

+ +

+

sin

sin sin

sin ( ) ( ) ( ) ( )[ ]t f t f t f tsin sin sin2 2 22 1
2

2π π π+

Now we substitute the three standard trigonometric identities:

( ) ( )[ ]
( )[ ]
( )

sin sin sin

sin cos

sin sin cos c

3

2

3 3 4

1 2 2

α α α

α α

α β α β

= − +

= −

= − − ( )[ ]os α β+ 2

then gather terms of the same frequency. The result is summarized in Table 11.1.
The following notation applies: x = 2πf1t, and y = 2πf2t. In addition, we used fre-
quencies f1 = 10 Hz and f2 = 11 Hz to make things more specific.
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In the general case with higher order nonlinearities, the procedure shown above
will eventually produce trigonometric terms of the form sin(mx + my). The har-
monic order l is given by l = m + n.

The four third order harmonic terms in the 30-Hz range are usually eliminated
by system filters. Note, however, that there are two third order terms, one at 9 Hz
and the other at 12 Hz, that are in the direct band of 10 Hz and 11 Hz.

Note in the table that the amplitude of the sin(x) gain term increases as A, while
the amplitude of the third order terms like cos(2x y) increases as A3. So as A
increases there will be a point where the two power levels are the same. This point is
called the third order intercept point IP3, from which we have

( )
( )

IP aA R

IP cA R

3

2

3
3 2

2

3 4 2

=

=

where R is the resistance that the power is dissipated into, nominally 50 ohms for
most systems. From these two equations we can solve for c in terms of IP3 and a,
alone. The result is

c a IP R= ±2 33
3

Choosing between the + or − sign is not arbitrary. Either will work as far as the
power, but review the coefficient of the sinx term in Table 11.1. If c > 0, then as the
input amplitude A increases, the net power would increase above the linear gain
term. This is not physically correct. If c < 0, the output power will begin to fall below
the extended linear projection. This is the physical result. The amplifier cannot put
out infinite power as the input power increases. It will go into saturation where the
output levels off to some value regardless of the input. By taking c < 0, we achieve
this result.

Example
Design an amplifier model that has a 10-dB linear gain and an IP3 of +10 dBm.

Solution: From the above equations, we arrive at the transfer equation

y x x= −10 4216 3.
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Table 11.1 Nonlinear Harmonic Coefficients

Coefficient Harmonic Term Value (Hz)

aA + 3cA3/4 sin(x) 10

aA + 3cA3/4 sin(y) 11

−3cA3/4 sin(3x) 30

3cA3/4 sin(3y) 33

3cA3/2 cos(2x − y) 9

3cA3/2 cos(2y − x) 12

−3cA3/2 cos(2x + y) 31

−3cA3/2 cos(2y + y) 32



Figure 11.1 shows the signal spectra when the input signal power is −20 dBm.
From this figure, the output power of the direct signal is 10 dB higher than the input,
or −10 dBm. The third harmonic power is at -50 dBm. Now if we increase the input
power by 20 dB, the direct power increases in kind to +10 dBm. But the third har-
monic term increases as a 3:1 ratio, so its output power is now −50 dBm + 3*20
dBm = +10 dBm again. This verifies the model.

The model is not quite finished, however. As the input keeps increasing the
input power, the output power will reach some maximum, and then start to
decrease again. The curve is a cubic. What we can do is find the point where the
curve maximizes out. This is given at the input amplitude

A a c

P A
max

max max

2

2

2 3

4

=

=

At this point the curve is at its maximum and the slope is horizontal. If the input
power is greater that Amax, we simply extend the Pmax out to infinity. This gives a
smooth transition and is quite satisfactory in terms of performance. Figure 11.2
shows this model.

The 1-dB compression point is a standard amplifier specification, as is the IP3.
This point is defined as the output power that is 1 dB below that which would be
expected for a linear amplifier.

Note that we do not have independent control over the 1-dB compression point.
But it will fall within the desired range mention above. In this model, Figure 11.3
shows that the 1-dB point is +0.3 dB.

In general, the IP3 is about 10 to 12 dB higher than the P1 point. The amplifier
will go into saturation before the IP3 point is reached. In the model used here we
have such a result. The IP3 is slightly less that 10 dB greater to than the P1. Note that
this result is fixed. We cannot independently control both parameters with this sim-
ple third order model. In order to independently control the 1-dB point, we must use
a higher order polynomial to describe the curve.

Figure 11.4 shows the standard plot that combines both effects.
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11.2 TWT

The TWT is also a nonlinear amplifier, but it is described differently than above.
The basic equation is

( ) ( ) ( )( )y r t A r ft r, sin= +2π ϕ

where r is the amplitude of the input signal. The term A(r) is known as AM-AM con-
version, and the term ϕ(r) is known as AM-PM conversion. One model of a TWT is

( ) ( )
( ) ( )

A r r a b r

r a r b r

r r= +

= +

1

1

2

2 2ϕ ϕ ϕ

where the four coefficients are found via a curve fit to the actual measured data. A
simpler way is to use a table look-up format. Figure 11.5 shows the plot for the
amplitude, and Figurer 11.6 shows the plot for the phase.

An easy implementation of the model is at baseband where the phase and ampli-
tude can be controlled independently. This model is shown in Figure 11.7.

If the model is used at RF, then a Hilbert transform must be used to produce a
quadrature signal that is required to implement the phase shift. This model is shown
in Figure 11.8.

11.3 Spur Charts

Another standard presentation of the amplifier nonlinearity is a spur chart shown in
Table 11.2. This chart usually goes up to a 10 × 10 matrix. It shows the power of
the harmonic m × n relative to the direct output.

Theses charts are always presented under some specific conditions as shown in
the table. The [1, 1] position entry in the matrix is a “–”. It can be interpreted as 0
dBm (relative to itself), which is the notation sometimes seen.
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One way to model this chart is to write the amplifier transfer function in the
form

y a xk
k

k

=
=
∑

0

10

Next, substitute for x
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( ) ( )x A f t A f t= +sin sin2 21 2π π

Then using standard trigonometric identities reduce all terms from a power to a
multiple angle as we did for the simple cubic model. Finally, gather up all terms with
the same frequency. The coefficient of such a term will contain several of the model
coefficients ak. Then equate each such term to the corresponding value in the data
table. The final result is a system of 11 equations in 11 unknowns that can be
inverted. These coefficients can then be stored once and for all without need for
recalculation each time.
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Figure 11.8 RF simulation of a TWT tube. The Hilbert transform is used to obtain the quadrature
component needed to implement the phase shift portion. Note that we add a delay to the inphase
signal to account for the group delay of the Hilbert filter.

Table 11.2 Harmonic Spur Chart of a Mini-Circuits Mixer

RF
harmoinic
order

0 — — 1 16 16 31 52 33 28 68 49 63

1 — 23 — 29 23 30 42 43 38 56 35 48

2 >95 61 59 59 61 66 71 70 72 64 >67 67

3 >94 >72 69 >74 63 >73 72 >71 >74 >74 >74 67

4 >96 75 >73 >73 >74 >74 >74 >74 >74 >74 >73 >75

5 >97 >74 >74 >73 >73 >72 75 >73 >72 >74 >74 >73

6 >90 >68 >74 >74 73 >73 >73 >75 >73 >73 >74 >74

7 >89 >67 >67 >74 >75 >75 74 >74 >74 >75 >73 >73

8 >90 >67 >69 >67 >73 >74 >74 >73 >73 >73 >74 >74

9 >89 >68 >68 >68 >67 >74 >74 >73 >74 >72 >74 >73

10 >91 >68 68 >68 >68 >68 >74 >74 >74 >71 >74 >74

0 1 2 3 4 5 6 7 8 9 10



11.4 Conclusion

This chapter was devoted to the simulation of nonlinear amplifiers. We started with
the definitions of the standard impairments of the 1-dB compression point and the
two-tone third order intercept point. These numbers are commonly presented in the
amplifier specification sheets. We described a simple model using a third order poly-
nomial and derived the coefficients to meet the amplifier specifications. Another
amplifier model described was the TWT amplifier used in satellite-based transpond-
ers. Finally, we briefly described the methodology for obtaining another perfor-
mance metric, namely the mixer spur chart. The basic idea, know as harmonic
balance, represents the mixer as a high order polynomial. Into this polynomial a two
signal is entered. By algebra, and the trigonometric identities, one can gather up all
harmonic terms with their coefficients being a function of the polynomial coeffi-
cients and the input signal amplitudes. This results in a matrix equation that can be
easily solved.
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C H A P T E R 1 2

Baseband Simulation
Here is a common simulation scenario. Consider an IS-136 wireless system. The
carrier frequency is in the 880-MHz range, while the symbol rate is 24.3 Ksps. To
implement such a system, the sample rate must be at least four times the carrier fre-
quency, or 3.52 Gsps. But this is a huge overkill with respect to the information rate.
In this chapter we develop the concept of baseband simulation, which eliminates the
carrier altogether. We sample at a rate that is commensurate with the information
bandwidth, thus greatly reducing the simulation time. Note, however, that this tac-
tic works only if there are no nonlinear elements in the system such as amplifiers
with IP3, or when evaluating the effects of a frequency fade channel. In those cases
the results are dependant on the actual carrier frequency, and we are stuck with the
complete sampling system.

12.1 Basic Concept

We start with any system where the information is in the baseband forms I(t) and
Q(t). We modulate this signal on a carrier to obtain the transmitted signal

( ) ( ) ( ) ( ) ( )s t I t f t Q t f t= + + +cos sin2 20 0π θ π θ

where θ represents an unknown phase of the received carrier with respect to the car-
rier used in the I/Q down conversion.

At the receiver, we down convert s(t) back to baseband using the quadrature
technique as described in Chapter 6. After filtering out the 2f0 term, we have the esti-
mates of the symbols I(t) and Q(t)

( ) ( ) ( )
( ) ( ) ( )

′ = +

′ = −

I t I t Q t

Q t I t Q t

cos sin

sin sin

θ θ

θ θ

The whole trick now is to represent I and Q as complex numbers

( ) ( ) ( )
( ) ( ) ( )

z t I t jQ t

z t I t jQ t

= +

′ = ′ + ′

Now we can also write the phase angle term as e = cosθ + jsinθ. From all of this
we get the neat result
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( ) ( )′ =z t z t e jθ

In other words an overall carrier phase shift is accomplished by a complex phase
rotation. Furthermore, the rotation angle θ need not be constant. For one thing,
what the transmitter thinks is the frequency f0 is not necessarily what the receiver
thinks is f0. No two oscillators have exactly the same frequency. Furthermore, there
may be Doppler frequency shift due to relative platform motion. In the signal inter-
cept world, the receiver sees a “blob” of energy at some frequency and can only esti-
mate the carrier. In all cases one can write the phase θ in the form

( )θ θ πt ft= +0 2 ∆

with ∆f representing this unknown frequency difference.
The physical signal s(t) is obtained by the relation

( ) ( )[ ]s t z t= Re

How this complex arithmetic is handled depends on the basic simulation engine.
In some cases the compiler can handle complex numbers as a single entity, and the
simulation would look like Figure 12.1.

In other simulation engines, a complex number is not recognized as a single unit.
In this case, the real and imaginary parts must be kept separate with the algorithm
performing the appropriate calculations, as shown in Figure 12.2.

12.2 Pass-Band Filtering

Returning to the original carrier-based simulation; there is always some form of
pass-band filter at the carrier in the system. How do we handle this in our baseband
simulation? It turns out that any pass-band filter impulse response can be written in
the form

( ) ( ) ( ) ( ) ( )h t M t f t N t f tpb = +cos sin2 20 0π π
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where M(t) and N(t) are the low-pass components of the filter, which depend on the
filter BW, type, and number of poles, but not the carrier. With this representation,
let us see how a pass-band signal is transformed through this filter:

( ) ( ) ( )
( ) ( ) ( ) ( )[ ] ( ) ( ) ( )

′ =

= + +

s t h t s t

M t f t N t f t I t f t Q t

pb *

cos sin * cos sin2 2 20 0 0π π π ( )[ ]
( ) ( ){ } ( ) ( ){ }[ ]

( ) ( ) ( )

2

2 2

2

0

0 0

0

π

τ π τ τ π τ

τ π τ τ

f t

M t f t N t f t

I f Q

= − − + − −

⋅ +

∫ cos sin

cos ( )[ ]sin 2 0π τ τf d

The next few steps of the development are straightforward (a classic cliché in
text books). The final result is

( ) ( ) ( ) ( ) ( )[ ]{ } ( )
( ) ( ) ( ) ( )[ ]{ }

′ = − + −

+ − − −

∫
∫

s t M I t N Q t d f t

M Q t N I t d

τ τ τ τ τ π

τ τ τ τ τ π

cos

sin

2

2

0

( )f t0

In short-hand notation we can write

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

′ = +

′ = −

I t M t I t N t Q t

Q t M t Q t N t I t

* *

* *

From this relation the baseband equivalent filtering operation is shown in Fig-
ure 12.3.

In many cases the pass-band filter has symmetry such that M(t) = 0, which sim-
plifies the operation further. Finally we note that the pass-band filters are usually set
wide with respect to the modulation bandwidth. Thus, the effect of such a filter is
not an issue; the operation can be done away with in it entirely.
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12.3 Baseband Noise

We have shown how to handle the baseband equivalent of the signal portion of the
simulation, but what about noise? It turns out that the pass-band noise can also be
written in the common form

( ) ( ) ( ) ( ) ( )n t n t f t n t f tI Q= +cos sin2 20 0π π

where the pass-band noise components have the statistics

( ) ( ) ( ) ( )
( ) ( )

n t n t n t n t

n t n t N B

I Q I Q

I Q

= = =

= =

0

2 2
0

and B is the bandwidth of the pass-band. One nice thing to remember is that a com-
plex constant phase rotation on the noise produces another set of noise with exactly
the same statistics. This is due to the fact that any linear combination of a
Gaussian-distributed signal is again Gaussian-distributed (this is a good exercise for
the interested reader).

In Figure 12.4 we show a baseband simulation of a QPSK signal with RRC base-
band (not pass-band) filtering.

The noise variance is determined in a manner similar to that described in Chap-
ter 9. For a specific Eb/N0, we obtain the result for each of the noise components:

( ) ( )[ ] [ ]N I t Q t E N Rb0
2 2

0= +
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Figure 12.4 Baseband QPSK BER simulation with baseband RRC filters.



12.4 Conclusion

Baseband simulations are desirable to reduce the simulation time. Unless the system
contains a nonlinear element of some sort, such a simulation is possible. In this
chapter we developed the concept of a baseband simulation in terms of the I and Q
components of the signal. It was shown that a complex representation of the signal z
= I + jQ is very useful in developing the required processing steps.
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C H A P T E R 1 3

Ultra-Wideband Systems
UWB systems are currently undergoing intense development by a large number of
commercial organizations worldwide. The goal is to provide a very high data rate
for applications in wireless communications. In this chapter we present the current
state of development in the field. The system concepts are still under a state of flux
and what finally emerges may differ from what is presented here. However, most of
the basic concepts should not change.

The first observation is the nature of wireless use and capability. From Chapter
5 on detection theory we noted that the output SNR of the detection matched filter
is

SNR E N A N Rb= =2 0
2

0

for a constant envelope signal of amplitude A, and data rate R. Clearly, as R
increases, the SNR goes down for a fixed A. To make up for the loss, A must
increase accordingly, but A2 is the signal power that cannot be increased without
limit. The bottom line is that the wireless UWB applications are intended for a very
short range. The terminology is called wireless personal area networks (WPANs),
which operate over distances of the order of room size.

What is a UWB system? The following is the current definition:

• Bandwidth contained within 3.1 to 10.6 GHz (communication sys.);
• Maximum EIRP of −41.3 dBm/MHz;
• UWB BW defined by

2 21

1

f f

f f
u

u

−
+

≥ .

or BW ≥ 500 MHz;

• No modulation scheme is implied.

Figure 13.1 shows the two-band allocation for UWB systems. The low band
occupies 3.1 to 5.0 MHz, while the high band contains 5.0 to 9.8 MHz.

Currently there are two very different competing systems under development.
We shall cover each in turn.
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13.1 Direct Sequence DS-UWB Systems

The DS-UWB system is much like the DS spread spectrum concept discussed in
Chapter 6. The data bits are replaced by code words, as shown in Section 13.1.5.
Figure 13.2 is the general block diagram of the system. The remaining sections pro-
vide the pertinent details.

13.1.1 Scrambler

Most wireless systems use a scrambler. Note that this is not the same as an
interleaver. The idea of the scrambler is to preclude transmitting long strings of [1]
or [0] bits. Figure 13.3 shows this operation. The feedback system is just as
described in Chapter 6 regarding DSSS systems. The polynomial in this case is

( )g D D D= + +1 14 15
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3 4 5 6 7 8 9 10 11 GHz

Low Band

3 4 5 6 7 8 9 10 11 GHz

High Band

Figure 13.1 UWB spectral allocation: (a) low band; and (b) high band.

Bits in

Scrambler Convolutional FEC Puncture Modulation

Baseband RRCTo RF Section

Figure 13.2 DS-UWB data block diagram.

D D D D D

Figure 13.3 DS-UWB scrambler.



The only difference here is that the input data [b] is running at the same rate as
the shift back register. In other words, there is no expansion of bandwidth here. The
output of the scrambler is given by

S x b0 0 0= ⊗

13.1.2 Forward Error Correction

The DS-UWB employs two different convolutional codes as shown in Figure
13.4(a, b).

13.1.3 Puncturing

Both of the encoders are rate 1/2. This means that there are two output bits for every
one input bit, which doubles the required transmission bandwidth. In many cases
this is unacceptable, and a lower rate such as 2/3 or 3/4 is desired. One way to do
this is to directly implement codes with the desired rates. While this is possible, it is
almost never done. Strangely enough, what is done is to take the rate 1/2 or 1/3
code, and simply throw away bits. This deletion is not done randomly but at places
where the simulations and theory show that the net effect is negligible. Figure 13.5
shows the operation that converts r = 1/2 to r = 3/4, which is required for some UWB
data modes. The encoder accepts 9 input bits into the r = 1/2 convolutional encoder,
producing 18 output bits. Six of these 18 bits are eliminated, sending 12 bits into the
channel. Nine bits in, 12 bits out or r = 3/4.

The reinsertion of the dummy bit is a logical zero with the possible data being
[1, –1]. The Viterbi decoder works on soft decisions in this operation. It is also pos-
sible to modify the FEC coder to ignore the trellis coder paths and not reinsert the
data bits (see Appendix C on error correcting codes).
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Output Data B
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Figure 13.4 (a) Rate 1/2, K = 6 convolutional encoder code polynomial = (65,57)8. (b) Rate 1/2,
K = 4 convolutional encoder code polynomial = (15,17)8.



13.1.4 Interleaver

The interleaver employed is called a convolutional interleaver. It works differently
than the simple row x column algorithm mentioned in Chapter 1. Figure 13.6 is a
block diagram.

The block interleaver mentioned in Chapter 1works on groups of bits or blocks
at a time. By contrast, the convolutional interleaver works in a time continuous
mode. There is a series of N registers of depth 0 (direct feed through), J, 2J, …, (N –
1)J. The two commutator switches cycle switch in unison from one register to the
next on a bit-by-bit basis. The registers are initialized to 0 at time t = 0.

At time t = 0, the first bit is transmitted through. At t = 1, the commutators drop
to the second register and read out the rightmost bit, which is a 0 (and will eventu-
ally be ignored in the deinterleaver). At the same time the second bit is entered into
the leftmost position of the register. At time t = 2, the switches drop to the third posi-
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Punctured coding (r = 3/4)

Source data

Encoded data

Bit stolen data

Stolen bit

Insert dummy 0 bit

(Tx/Rx data)

Bit inserted

data

Decoded data

0

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

b0 b2 b3 b5 b6 b8

a1 a3 a4 a6 a7b0 b2 b3 b5 b6 b8a1

a0 a1 a3 a4 a6 a7

a0 a1 a3 a4 a6 a7

b0 b2 b3 b5 b6 b8

Figure 13.5 Rate 1/2 to 3/4 puncturing operation.

Encoded bits Interleaved bits

J

2J

(N-2)J

(N-1)J

Figure 13.6 Convolutional interleaver.



tion and read out the rightmost bit, which again is a 0. Bit 2 is entered into the
leftmost position of this register. This process continues to the Nth register. The
commutators now go back up to the top and the whole process is repeated (i.e., the
N+1 bit is transmitted). As the process continues, the bits in the various registers get
pushed to the right, and are eventually read out into the system.

The advantage of the convolutional interleaver is that the throughput delay and
memory cells required are less than the corresponding block interleaver.

The UWB interleaver uses J = 7, N = 10.

13.1.5 Modulation

The DS-UWB system employs a combination of modulation and coding (not FEC
here). The primary form of modulation is called BPSK. But this is somewhat of a
misnomer, as we shall see shortly. The optional form is called 4-biorthogonal key-
ing (4-BOK), which requires some explanation

4M-BOK Coding
The basic idea of orthogonal keying (OK) is to take a group of k information bits
[mk] and produce a 2k bit code word [Rn,k] such that all code words are orthogonal;
that is,

R R n m

n m

nk mk
k

N

* = ≠

= =
=
∑ 0

1
0

One procedure for generating such codes is simple and based on the Walsh
Haddamard transformation. We start with k = 1,

[ ] [ ]
[ ] [ ]
0 10

1 01

→

→

,

,

Now we define the Walsh matrix as

[ ]W2

1 0

0 1
= 





Using Boolean logic, the two rows of this matrix are seen to be orthogonal.
From here we generalize as follows:

[ ] [ ] [ ]
[ ] [ ]W
W W

W Wk

k k

k k
2 =











,

,

and so on. The IS-95 wireless CDMA system uses such codes to provide strict
orthogonality between multiple users who coexist in the same bandwidth.

In BOK coding, start with the OK codes just described but augment the code set
[Wk] by adding the inverse of each of the original orthogonal codes. This is called
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biorthogonal coding in most textbooks. The second set of code words is the same as
the first set but with the leading bit set to 1. Specifically, 8-BOK makes the assign-
ment as shown in Table 13.1.

The DS-UWB system actually uses 4-BOK, which has the coding shown in Table
13.2.

This is a strange looking table since both columns are the same. However, the
right-hand column is only an example and there are other choices.

We can restate Table 13.2 in the more general form of Table 13.3.
The only requirements on S1(t) and S2(t) are

( ) ( )

( ) ( )

S t S t dt

S t dt S t dt

T

TT

1 2
0

1
2

2
2

00

0=

= =

∫

∫∫ Energy

The DS-UWB uses ternary codes, which have three states [+, 0, –]. The 0 implies
no transmission during that chip time. The codes for the various data rates and mod-
ulation are shown in the Tables 13.4 through 13.7 below.

The term BPSK now implies only 1 input bit per output code sequence L. The
signal is not strictly BPSK since there are three levels. A more appropriate term is
antipodal, which requires S2(t) = –S1(t).

In 4-BOK, 2 input bits are encoded into a cover sequence L. Over the air the
modulation is the same as normal BPSK except the code bit 0 simply transmits a
blank or no signal.

To see how all of this plays out, consider the 28-Mbps (nominal data rate) case
in the lower band, Table 13.4. This rate uses an L = 24 code. Now we wish to use
piconet channel 1 center frequency of 3,939 MHz (Table 13.8), which requires
spreading code 1 (Table 13.9), specifically [–1, 0, 1, –1, -1, -1, 1, 1, 0, 1, 1, 1, 1, -1, 1,
-1, 1, 1, 1, -1, 1, -1, -1, 1].

We now have the following transmission chip rate calculation:

Chip rate = [28 Mbps] × [2 (for FEC r = 1/2)] × [24 (L code)] = 1,344 Mbps
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Table 13.1 8-BOK Binary
Coding

Input Bits Coded Bits

000 0000

001 0101

010 0011

011 0110

100 1111

101 1010

110 1100

111 1001



Note in Table 13.4 the chip rate is 3,939 MHz/3 = 1,313 MHz. We see that
there is a disconnect between the two chip rates. The proper calculation is to start
with Table 13.8 and work backward to find the associated data rate—27.354 Mbps
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Table 13.3 General
4-BOK Coding

Input Bits Coded Signal

00 S1(t)

01 S2(t)

10 −S2(t)

11 −S1(t)

Table 13.2 4-BOK
Binary Coding

Input Bits Coded Bits

00 00

01 01

10 11

11 10

Table 13.4 Available Data Rates in Lower Operating Band
for BPSK with Associated FEC and Spreading Code Rate

Nominal Data
Rate (Mbps) FEC Rate

Code
Length (L)

Bits per
Symbol

Symbol
Rate

28 ½ 24 1 Fchip/24

55 ½ 12 1 Fchip/12

110 ½ 6 1 Fchip/6

220 ½ 3 1 Fchip/3

500 ¾ 2 1 Fchip/2

660 1 2 1 Fchip/2

1,000 ¾ 2 1 Fchip

Table 13.5 Available Data Rates in Lower Operating Band
for 4-BOK with Associated FEC and Spreading Code Rates

Nominal Data
Rate (Mbps) FEC Rate

Code
Length (L)

Bits per
Symbol

Symbol
Rate

110 ½ 12 2 Fchip/12

220 ½ 6 2 Fchip/6

500 ¾ 4 2 Fchip/4

660 1 4 2 Fchip/4

1,000 3/4 4 2 Fchip/2

1,320 1 2 2 Fchip/2



in this case. If we had chosen the carrier frequency of 3,978 MHz, then by the same
logic the data rate would be 27.625 Mbps. This is why Tables 13.3 through 13.7 use
the term “Nominal Data Rate.” This terminology avoids the cumbersome
book-keeping that would be necessary to detail all cases. All of these different actual
rates only vary by a few percent.
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Table 13.6 Available Data Rates in Higher Operating Band
for BPSK with Associated FEC and Spreading Code Rate

Nominal Data
Rate (Mbps) FEC Rate

Code
Length (L)

Bits per
Symbol

Symbol
Rate

55 1/2 24 1 Fchip/24

110 1/2 12 1 Fchip/12

220 1/2 6 1 Fchip/6

500 3/4 4 1 Fchip/4

660 1 4 1 Fchip/4

1,000 3/4 4 1 Fchip/2

1,320 1 2 1 Fchip/2

Table 13.7 Available Data Rates in Higher Operating Band for
4-BOK with Associated FEC and Spreading Code Rate

Nominal Data
Rate (Mbps) FEC Rate

Code
Length (L)

Bits per
Symbol

Symbol
Rate

220 1/2 12 2 Fchip/12

660 3/4 6 2 Fchip/6

1,000 3/4 4 2 Fchip/4

1,320 1 4 2 Fchip/4

Table 13.8 Piconet Channel Numbers with
Associated Chip Rates and Carrier Frequency

Piconet
Channel

Chip
Rate
(MHz)

Center
Frequency
(MHz)

Spreading
Code Set

1 1,313 3,939 1

2 1,326 3,978 2

3 1,339 4,017 3

4 1,352 4,056 4

5 1,300 3,900 5

6 1,365 4,094 6

7 2,626 7,878 1

8 2,652 7,956 2

9 2,678 8,034 3

10 2,704 8,112 4

11 2,600 7,800 5

12 2,730 8,190 6



A similar procedure is used for the 4-BOK coding. For example, from Table
13.7 we desire a 220-Mbps nominal data rate for the upper band. This rate requires
an FEC rate r = 1/2, with an L = 12 code set. The chip rate calculation is then

Chip rate = [220 Mbps] × [2 FEC] × [2 bits/symbol] × [L = 12] = 2,640 Mbps

From Table 13.8, we select upper band piconet 7, using a frequency of 7,878
MHz. The corresponding chip rate is then 2,626 Mbps. As before, there is a mis-
match. The actual data rate would be 220 × (2,626/2,640) = 218.83 Mbps. Table
13.10 describes at L = 6.

For each 2 bits of input data, the particular L = 12 spreading code is shown in
Table 13.11. The reader can verify that this code set has the required 4-BOK proper-
ties.

The final time domain baseband waveform for any case can be written in the
form

( ) ( )s t a h t kTk rrc c
k

L

= −
=

−

∑
0

1

where ak = [1, 0, –1] according to the to the entry tables below.
Note the chip rate = carrier frequency/3.
Figure 13.7 is a single block diagram of the modulation process. The two bit

data group selects one of the four cover codes for L = 24 as shown in Figure 13.8 for
the two bit pattern [0, 0]. Each modulated bit (impulse) drives the RRC Filter in a
manner described in Chapter 8. The carrier modulated signal is shown in Figure
13.9. Finally the signal PSD is shown in Figure 13.10.
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Table 13.10 L = 6 and Shorter Codes for BPSK

Code Set
Numbers L = 6 L = 4 L = 3 L = 2 L =1

1 – 6 1, 0, 0, 0, 0, 0 1, 0, 0, 0 1, 0, 0 1, 0 1

Table 13.9 L = 12 and 24 Codes for BPSK and Acquisition

Code Set
Number

L = 24 L = 12

1
–1. 0, 1, –1, –1, –1, 1, 1, 0, 1, 1, 1, 1, –1, 1, –1,
1, 1, 1, –1, 1, –1, –1, 1

0, –1 –1, –1, 1, 1, 1,
–1, 1, 1, –1, 1

2
–1, –1, –1, –1, 1, –1, 1, –1, 1, –1, –1, 1, –1, 1,
1, –1, –1, 1, 1, 0, –1, 0, 1, 1

–1, 1, –1, –1, 1, –1, –1, –1, 1, 1, 1, 0

3
–1, 1, –1, –1, 1, –1, –1, 1, –1, 0, –1, 0, –1, –1,
1, 1, 1, –1, 1, 1, 1, –1, –1, –1

0, –1, 1, –1, –1 1, –1
–1, –1, 1, 1, 1

4
0, –1, –1, –1, –1, –1, –1, 1, 1, 0, –1, 1, 1, –1, 1,
–1, –1, 1, 1, –1, 1,1 –1, 1, –1

–1, –1, –1, 1, 1, 1, –1, 1, 1, –1, 1, 0

5
–1, 1, –1, 1, 1, –1, 1, 0, 1, 1, 1, –1, –1, 1, 1, –1,
1,1, 1, –1, –1, –1, 0, –1

–1, –1, –1, 1, 1, 1, –1, 1, 1, –1, 1, 0

6
0, –1, –1, 0, 1, –1, –1, 1, –1, –1, 1, 1, 1, 1, –1,
–1, 1, –1, 1, –1, 1, 1, 1, 1

0, –1, –1, –1, 1, 1, 1, –1, 1, 1, –1, 1



13.2 Multiband OFDM UWB-Multiband OFDM Alliance Systems

The alternate UWB concept to DS is based on orthogonal frequency division modu-
lation (OFDM) modulation as discussed in Chapter 6. For the purpose of operation,
the UWB spectra of Figure 13.1 is broken into five band groups. The first four
groups have three subbands, and the fourth has two subbands. Figure 13.11 shows
this assignment. The use of these bands is discussed in the section on RF modulation
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Table 13.11 L = 12 and Shorter Codes for 4-BOK Code Sets 1 to 6

Input Data
Gray Coding L 12 BOK L 6 BOK L 4 BOK L 2 BOK

00 1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1, 0, 0, 0, 0, 0 1, 0, 0, 0 1, 0

01 0,0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 0, 0, 0, 1, 0, 0 0, 0, 1, 0 0, 1

11 –1,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 –1, 0, 0, 0, 0, 0 –1, 0, 0, 0
–1, 0

10 0,0, 0, 0, 0, 0, 0, –1, 0, 0, 0, 0, 0 0, 0, 0, –1, 0, 0 0, 0, –1, 0 0, –1

data code select rrc filter

modulated signal

carrier frequency

Figure 13.7 Modulation block diagram.
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Figure 13.8 L = 24 cover code.



below (Section 13.2.3). Table 13.12 gives the specific frequency assignments for
each.

The details of the first line in Table 13.13 are as follows:

• Input data rate: 160/3 = 53.3 Mbs;
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Figure 13.9 Modulated waveform on carrier.
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• QPSK modulation, 2 bits/sym: 80/3 = Msym/sec;
• Rate 1/3 FEC: [80/3]*3 = 80 Msym/sec;
• OFDM time: 0.3125 usec;
• Required data symbols per OFDM frame: 0.3125 usec*80 Msym/sec = 50;
• Conjugate addition: yes;
• Available data symbols per OFDM frame: 2*25 = 50.

13.2.1 FEC Coding

Figure 13.12 shows the basic K = 7, rate = 1/3 Viterbi encoder used.
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Table 13.12 OFDM Frequency Band Assignments

Band
Group BAND_ID

Lower
Frequency
(MHz)

Center
Frequency
(MHz)

Upper
Frequency
(MHz)

1 1 3,168 3,432 3,696

2 3,696 3,960 4,224

3 4,224 4,488 4,752

2 4 4,752 5,016 5,280

5 5,280 5,544 5,808

6 5,808 6,072 6,336

3 7 6,336 6,600 6,864

8 6,864 7,128 7,392

9 7,392 7,656 7,920

4 10 7,920 8,184 8,448

11 8,448 8,712 8,976

12 8,976 9,240 9,504

5 13 9,504 9,768 10,032

14 10,032 10,296 10,560

Table 13.13 OFDM Modulation Parameters

Data Rate
(Mbps) Modulation

Coding
Rate (R)

Conjugate
Symmetric
Input
to IFFT

Time Spreading
Factor (TSF)

Overall
Spreading
Gain

Coded Bits per
OFDM Symbol
(NCBPS)

53.3 QPSK 1/3 Yes 2 4 100

80 QPSK 1/2 Yes 2 4 100

110 QPSK 11/32 No 2 2 200

160 QPSK 1/2 No 2 2 200

200 QPSK 5/8 No 2 2 200

320 QPSK 1/2 No 1 (No spreading) 1 200

400 QPSK 5/8 No 1 (No spreading) 1 200

480 QPSK 3/4 No 1 (No spreading) 1 200



13.2.2 Puncturing

Figures 13.13 through 13.16 show the details of the puncturing of the basic rate 1/3
code for the various output data rates.

13.2.3 Modulation

Once the data is finally encoded and interleaved, it is ready for modulation. The
modulation format is OFDM, as discussed in Chapter 6. In this case the system is
based on an N = 128 point FFT. An OFDM symbol is written in the form

( )s t c ek

jk t

k

f=
=
∑ 2

0

127
π ∆

where ∆f = 528 MHz/128 = 4.125 MHz. The time extent of this IFFT is the recipro-
cal of the spacing, or 242.42 ns. The total OFDM frame time is

165/528 MHz = 312.5 ns. Unlike the previous discussion on OFDM in Chapter
6, there is no periodic extension of the tones to fill the gap. In this case the signal is
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Figure 13.12 FEC coding with code polynomials [133]8, [165]8, [171]8.
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B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
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A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 B1 C1 A3 B3 C3 A4 B4 C4 A1 B1 C1 AX BX C0 A0 B0 C0 A10 B10

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
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Figure 13.13 Rate 11/32 puncturing.



simply blanked out over the remaining (165 – 128)/528 MHz = 37/528 MHz =
70.08 ns. Table 13.14 shows the various parameters under discussion.

Out of the 128 possible tones, only 100 subcarriers are used for data, with each
being modulated by 2 complex bits or QPSK. Twelve more subcarriers are devoted
to pilot signals used for synchronization. These pilot tones are defined for the kth
symbol as follows:
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Encoded data Stolen bit

Bit stolen data
(sent/received data)

Inserted dummy bitBit inserted data

Decoded data

A0 C0
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Figure 13.14 Rate 1/2 puncturing.
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Figure 13.15 Rate 5/8 puncturing.
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where pk is a member of an 127 bit pseudo-random bit sequence. This sequence is
repeated modulo 127. This defines 6 of the 12 subcarriers. The remaining six are
given by
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−

= <

=
, ,

*

, ,

.for bit rate

for bi

1067

t rate > 1067. Mbps

There are now [128 − (100 + 12)] = 16 subcarriers still unoccupied. Ten of these
(five on each end) are called guard subcarriers.
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Table 13.14 OFDM Modulation Parameters

Parameter Value

NSD: Number of data subcarriers 100

NSDP: Number of defined pilot carriers 12

NSG: Number of guard carriers 10

NST: Number of total subcarriers used 122 (= NSD + NSDP + NSG)

∆F: Subcarrier frequency spacing 4.125 MHz (= 528 MHz/128)

TFFT: IFFF/FFT period 242.42 ns (1/∆F)

TZP: Zero pad duration 70.08 ns (=37/528 MHz)

Source data

Encoded data Stolen bit

Bit stolen data
(sent/received data)

Inserted dummy bitBit inserted data

Decoded data y0 y1 y2

X0 X1 X2

A0 B1 C1 C2

A0

B0

C1 C2

A0

B0

C1 C2

Figure 13.16 Rate 3/4 puncturing.



13.2.4 Carrier Modulation Frequency Agility

The final step in the modulation process is to take the OFDM symbols as defined
above and translate them up to a suitable carrier frequency. To increase capacity,
the system uses what is called time frequency codes (TFC). This is essentially a sim-
ple frequency hopping scheme. Table 13.15 shows the specifics. For each of the
band groups 1 to 4, there are three subbands. There are four hopping patterns, as
shown in the first four entries of the table. So if band 1 is being employed with TFC
2, then the carrier frequencies would be 3,166, 4,224, 3,696, 3,166, 4,224, and
3,696 MHz. The pattern repeats itself in groups of six. For band group 5, there are
two hopping patterns: TFC 5 and 6 in the table. In total for each band group there
are 4 × 4 + 2 × 2 = 18 separate piconets that can be assigned.

Many military and wireless systems use some form of orthogonal frequency
hopping to reduce mutual interference between the various users.

13.3 Conclusion

This chapter dealt with the new wireless technology known as ultra-wideband.
There are two competing modulation technologies. The first is based on direct
sequence techniques using the BOK coding concept. The second is based on OFDM
technologies currently used in 802.11g WLANs.
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Table 13.15 TFC Frequency Code Parameters

TFC
Number

Preamble
Pattern
Number

Cover
Sequence
Number

Length 6 Time Frequency
Code (BAND_ID Values for
Band Group 1)

1 1 1 1 2 3 1 2 3

2 2 1 1 3 2 1 3 2

3 3 2 1 1 2 2 3 3

4 4 2 1 1 2 2 3 3

5 1 2 1 2 1 2 1 2

6 2 2 1 1 1 2 2 2
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Table of Laplace Transforms
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Table A.1 Laplace Transforms

Time Function Laplace Function

f(t) F s f t e dtst( ) ( )= −∞

∫0

f t F s e dsst

c j

c j

( ) ( )=
− ∞

+ ∞

∫ F(s)

Af1(t) + Bf2(t) Af1(s) + BF2(s)

f t f d
t

1 20
( ) ( )−∫ τ τ τ F1(s)F2(s)

Df(t)/dt sF(s) – f+(0)

f t dt
t
( )

0∫ F(s)/s

–tf(t) dF(s)/ds

f(t)/t F s ds
s

( )
∞

∫
eatf(t) F(s – a)

u(t) 1/s

t 1/s2

e–at 1/(s + a)

sinωt ω/[s2 + ω2
]

cosωt s/[s2 + ω2]
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Elements of Probability Theory and
Random Variables

B.1 Probability Theory

Probability theory is what is known as an axiomatic system. The basic idea is to
define a collection of objects or sample space with each element being a sample
point. A set of rules (axioms) regarding these objects is then postulated. From there,
the system is expanded with additional theorems and properties. The nature of the
objects and the axioms are totally at the discretion of the developer. Hopefully a
useful system results.

B.1.1 Axioms of Probability

The axioms of probability are as follows:

• Axiom 1: Given an experiment, there exists a sample space {S} that represents
all possible outcomes of an experiment, and a subset {A} of {S} called events.

• Axiom 2: For each event {A} there is an assigned probability of that event,
such that P{A} = 0.

• Axiom 3: The probability of the whole space is P{S} = 0.
• Axiom 4: If two events {A} and {B} are mutually exclusive, then

{ } { } { }
{ } { } { }

P A P B

P A B P A P B

I
U

=

= +

null set

If {A} and {B} are not mutually exclusive, then the following holds:

{ } { } { } { }P A B P A P B P A BU I= + −

B.1.2 Dice Example

As an example of such a sample space, consider the game of chance, which involves
two dice, each with sides numbered from 1 to 6. Table B.1 is one possible sample
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space that involves 6*6 = 36 objects. In this sample space we can ask questions
(experiment) regarding both dice individually (e.g., what is the probability of the
event that die A is even (2, 4, 6) and die B is greater than 3). In Table B.1 this would
be events [10, 11, 12, 22, 23, 24, 34, 35, 36].

In the casino game of craps, the only issue is what the sum is of the spots on the
dice as noted in the last column of Table B.1. In this case we can derive a second
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Table B.1 Sample Space of Two Dice

Event # Die A Die B Sum Probability

1 1 1 2 1/36

2 1 2 3 1/36

3 1 3 4 1/36

4 1 4 5 1/36

5 1 5 6 1/36

6 1 6 7 1/36

7 2 1 3 1/36

8 2 2 4 1/36

9 2 3 5 1/36

10 2 4 6 1/36

11 2 5 7 1/36

12 2 6 8 1/36

13 3 1 4 1/36

14 3 2 5 1/36

15 3 3 6 1/36

16 3 4 7 1/36

17 3 5 8 1/36

18 3 6 9 1/36

19 4 1 5 1/36

20 4 2 6 1/36

21 4 3 7 1/36

22 4 4 8 1/36

23 4 5 9 1/36

24 4 6 10 1/36

25 5 1 6 1/36

26 5 2 7 1/36

27 5 3 8 1/36

28 5 4 9 1/36

29 5 5 10 1/36

30 5 6 11 1/36

31 6 1 7 1/36

32 6 2 8 1/36

33 6 3 9 1/36

34 6 4 10 1/36

35 6 5 11 1/36

36 6 6 12 1/36



sample space as shown in Table B.2. Furthermore, we can define, for example, an
event that has as its outcome the sum of the two spots on the dice. This is also shown
in Table B.2

We can also reduce the sample space to 11 elements that represent the sum of
the first column, simplifying further calculations. For example, when initiating a
game of casino dice (craps), if the shooter roles a 7 or 11, he wins. What is the prob-
ability of that event? From Table B.2 we see that

{ } { } { }P U P P7 11 7 11 6 36 2 36 222= + = + =.

where we have made use of Axiom 4. By the rules, if the shooter instead roles a {2, 3,
12}, he loses. The probability of that event is 1/36 + 2/36 + 1/36 = 0.111.

B.1.3 Conditional Probability

A very common situation in probability problems is the following: given that an
event {A} has occurred, what is the probability that a second event {B} will occur?
The notation used is P B A[{ }{ }], and the basic definition is

{ }{ }[ ] { } { }[ ] { }[ ]P B A P B A P A= I

Now since P A I B P B I A[{ } { }] [{ } { }]= , we can write [Baye’s Theorem]

{ }{ }[ ] { }[ ] { } { }[ ] { } { }[ ] { }{ }[ ] { }[ ]P B A P A P B A P B A P A B P B= = =I I

This is a significant result. What it allows us to do is to switch which event is
conditioned on the other. These terms are sometimes denoted as a priori and a
poseteri. Recall that in Chapter 5 on detection theory we wanted to choose a signal.
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Table B.2 Sample Space of the Sum
of Two Dice

Sum Events Probability

2 1 1/36

3 2,7 2/36

4 3, 8, 13 3/36

5 4, 9, 14,19 4/36

6 5,10, 15, 20,25 5/36

7 6, 11, 16, 21, 26, 31 6/36

8 12, 17, 22, 27, 32 5/36

9 18, 23, 28, 33 4/36

10 24, 29, 34 3/36

11 30, 35 2/36

12 36 1/36



Such that P A N P A r[ , ] [ ]1 12≤ we used the above result to change the detection
requirement P r A P r A[ , ] [ ]1 11 2≤ . This probability could be calculated.

B.2 Random Variables

In the simplest sense, a random variable is any entity that can only be described in
terms of some statistical quantities. The starting point is called the probability distri-
bution function or the cumulative distribution function, Fx(α), which is defined by
the probability of the outcome of an experiment that produces a value for the ran-
dom variable x is less than α. Do not confuse the name of the random variable x with
a value that it can have, α. From this definition we have the following restrictions on
Fx(α):

( )0 1≤ ≤Fx α

and if α > β,

( ) ( )F Fx xα β>

which says that we cannot have negative probability. It is more common to deal
with the probability distribution function (PDF), fx(α) defined as the derivative of
Fx(α)

( ) ( )f dF dx xα α α=

We interpret the relation fx(α)dα as the probability that the random variable x
occurs from α to α + dα. Finally we must have

( )f dx α α =
−∞

∞

∫ 1

Let G(x) be a function of the random variable x. Then the expected value is
given by

( )[ ] ( ) ( )E G x G p dx=
−∞

∞

∫ α α α

This so far is a discussion of a single random variable. The idea can be extended
to two random variables x and y through a cumulative distribution function Fx,y(α,
β), which is the probability that the random variables x and y are less than α and β.
Then the two-dimensional PDF is simply

( ) ( )p Fx y x y, ,, ,α β ∂ α β ∂ α∂ β= 2

Some useful general relations are
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( ) ( )p p dx x yα α β β=
−∞

∞

∫ , ,

and the conditional probability expression

( ) ( ) ( )p p px x y yα β ε α ε ε= = , ,

B.2.1 The Gaussian Random Variable

The single most import random variable is the Gaussian PDF (GRV(µ, σ)) defined by

( ) ( )[ ]
[ ]

( )[ ]

p

E x

E x

x α α µ σ πσ

µ

σ µ

= − −

=

= −

exp
2 2 2

2 2

2 2

This statement is based on the central limit theorem, which states that: If [x1, x2,
x3, …] are a sequence of independent random variables of any distribution, then the
distribution of the sum

S xn k
k

n

=
=

∑
1

converges to GRV(µ, σ) as n → ∝.
A classic example of this involves the binomial distribution. Consider an experi-

ment with two outputs: [1] with probability p, and [0] with probability q = 1 − p.
Now perform this experiment n times and calculate the number of 1s that occur. To
see how this works, consider the case n = 3. Then there are eight possible outcomes
of the experiment, as shown in Table B.3.

From this table we get the results

[ ] [ ]
[ ] [ ]

P q P pq

P p q P p

0 1 3

2 3 3

3 2

2 3

= =

= =

,

,
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Table B.3 Outcome of Three Coin Flips

Event Outcome Sum Probability

1 000 0 qqq

2 001 1 qqp

3 010 1 qpq

4 011 2 qpp

4 100 1 pqq

6 101 2 pqp

7 110 2 ppq

8 111 3 ppp



It is easy to show that P[0] + P[1] + P[2] + P[3] = 1 as required. Notice the coeffi-
cient sequence [1 3 3 1] in the results above. This is recognized as the third line of
Pasqual’s triangle. The general result that, for n trials, the probability the sum will
equal k, is given by the binomial distribution

[ ] ( )
( )

P sum k c p p

c n k n k

n k
n k n k

k
n

= = −

= −

−
1

! ! !

By using Sterling’s formula

n n en n! .= + −2 5π

after a lot of manipulation we can write

[ ] ( )[ ]P sum k k np npq npqn = = − −exp
2

2 2π

where we note that np = µ, and σ2 = npq are the mean and variance of the original
binomial distribution.

The two-dimensional GRV is given by the PDF

( ) ( )f x y, , expα β
π ρ

α ραβ β

ρ
=

−
− − +

−













1

2 1

2

2 12

2 2

2

where we have assumed that the mean of each variable is zero and the variance of
each is unity, GRV[0, 1]. For a general GRV[µ, σ], the PDF can be obtained by the
transformation to a new variable ′α , = ( ′α − µ)/σ, (which is a good exercise for the
reader)

( )ρ αβ α β α β

ρ

=

− ≤ ≤
−∞

∞

−∞

∞

∫∫ f d dx y, ,

1 1

The symbol ρ is called the correlation coefficient. Finally, we have the two rela-
tions,

( ) ( )px α α π= −exp 2 2 2

independent of ρ, and

( ) ( ) ( )[ ] ( )
( )

p

GRV

x α β ε α ρε ρ π ρ

ρε ρ

= = − − − −

= −





exp

,

2 2 2

2

2 1 2 1

1

This last expression illustrates an important point. If the correlation coefficient
is ρ = 1 or −1, then there is no mystery as to what á would be, specifically α = ±ε. Fur-
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thermore, the uncertainty of this knowledge is zero (i.e., the variance is zero). This is
reflected in the equation. Now suppose ρ = 0; then there is no help and we have the
statistics on x as GRV[0, 1], which is the PDF of x without regard to y, as expected.

B.2.2 The Uniform Distribution

A second PDF that commonly appears is the uniform PDF. In this case any value of
the random variable x is equally likely. Consider the child’s toy of an arrow
mounted on a piece of cardboard. The arrow is free to spin. The PDF of the angle θ
is simply

( )pθ α π α π= ≤ ≤1 2 0 2

Question: You spin the arrow. What is the probability that the resulting angle is
33.11 degrees?

Answer: The probability is 0. This is one of the peculiarities of random vari-
ables, which can have a continuous output: an event of probability 0 that can
happen.
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Error Correcting Codes
Error correcting codes (ECC) are a powerful method for increasing the performance
of a communications system in AWGN. The basic idea is to add redundancy to a
block of bits in such a way that errors that occur in transmission can be corrected
giving an overall system performance. In this appendix, we will detail the two most
common code types: block codes and convolutional codes. Additional FEC code
structures are trellis codes, and low-density parity check codes.

This appendix is designed as a brief introduction to FEC, to familiarize the
reader with some its basic concepts. More in depth presentations can be found in the
references at the end.

C.1 Block Codes

As the name implies, block codes deal with a finite group of input bits at a time.
There are three basic numbers associated with such codes:

1. The number of input bits in the block: k;
2. The number of output bits in the block: n;
3. The number of errors that can be corrected: t.

The general notation is simply a [n, k, t] code. For example, the Golay code has
the notation [23, 12, 3]. The rate of the code, r, is given by r = k/n.

The algebra of coding theory is Boolean logic. The multiplication operator ⊗ is
the common AND gate and has the algebra given in Table C.1.

In the same manner, the addition operation ⊕ is the XOR having the truth table
of Table C.2.

C.1.1 Generating the Codes

The objective is to map a block of k bits into another block of n bits. A common way
to do this is to use matrix algebra. If we let the input bits be denoted by a k-bit col-
umn vector [u]k, and the corresponding n-bit output by a column vector [v]n, we can
write

[ ] [ ] [ ]v G u
n n k k

=
,

where [G]n,k is called the generator matrix. Usually the generator matrix is of the
form
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[ ]
( )

G

I

P
n k

k

n k k

,

,

=














−

K

where Ik is the k × k identity matrix, and P(n–k),k is called the parity array matrix. As an
example, take

[ ]G
6 3

100

010

001

101

110

011

,
=

























The code word for the input vector [111] is then given by

1

1

1

0

0

0

100

010

001

101

110

011

























=







































1

1

1

by applying the basic logic rules of Tables C.1 and C.2. Table C.3 shows the com-
plete coding structure.
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Table C.1 Boolean
Multiplication (AND) Logic

Input 1 Input 2 Output

0 0 0

0 1 0

1 0 0

1 1 1

Table C.2 Boolean Addition
(XOR) Logic

Input 1 Input 2 Output

0 0 0

0 1 0

1 0 1

1 1 1



Note that the first 3 bits of the output code word are the original message bits.
This type of code is called systematic.

From Table C.1 it can be seen that for any two output code words, the code bit
pattern differs in three positions. If we assume a single error, then we should be able
to make the proper correction. For example, if we receive the word [000001], then
no other code word with one error can reach this pattern. The proper decode to
[000000] is then possible. On the other hand, if we receive the code word with two
errors [000011], then either of the true code words [000000] or [101011] with two
errors could produce the same result.

Let [e] be an n-bit vector that represents the errors that were incurred during the
transmission. Then the received code word [r] can be written as

[ ] [ ] [ ]r v e= +

The task at hand is, given [r], how do we choose or decode [v] and, from there,
the original data vector [u]? In Chapter 5 we saw that given a set of possible signals,
the optimum detector correlates the actual received signal with each of the members
of the possible signal, and chooses the largest value as the result. The same idea
applies here. What we could do is perform the vector dot products

D v rl m m
m

N
k

1
0

1

0 1 2 1= ≤ ≤ −
=

−

∑ ,

where vl,m is the mth bit of the lth possible code word, and choose the largest. Realize
that because of the binary operations, there could be a tie that must be resolved. To
be specific, for the [23, 12, 3] Golay code, we would have to perform 212 = 4,096
23-bit correlations. In general, the computation rate Rc required for real-time
decoding is related to the information bit rate R by

( )
R

n kT

n R k

c

k
b

k

=

=

=

#of operations / word time

2

2
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Table C.3 Coding of the
[6, 3] Code

Input Code
Word

Output Code
Word

000 000000

100 100110

010 010011

110 110101

001 011101

101 101011

011 011110

111 111000



For the Golay code, we obtain Rc = 276R. Thus, the maximum rate R that can be
decoded in real time requires a computer operation 276 times faster.

With modern data computing power, reasonable throughput rates are quite fea-
sible. But when the development of FEC began, this power was not there by orders
of magnitude, so the computational time was prohibitive. Thus, researchers in this
field developed very sophisticated mathematical systems now known as algebraic
coding theory.

To proceed, we now define the parity check matrix:

[ ]H

I

P

n k

T

=














−

K

The useful property of [H] is

[ ] [ ] [ ] [ ]B H G
T= = 0

If we multiply both sides of the above equation by a message word [u], we
obtain

[ ][ ] [ ] [ ][ ] [ ] [ ] [ ]B u H G u H v
T T= = = 0

Now if the corrupted received vector is [r] = [v] + [e], then the operation

[ ] [ ][ ] [ ] [ ] [ ]{ }
[ ][ ]

S H r H v e

H e

T T

T

= = +

=

yields an n–k vector, [S], called the syndrome, which is a function of the error pat-
tern only. The last relation is a set of n–k equations in the n possible errors. This is an
underdetermined system so it is not possible to solve for all of the errors as we noted
before. The whole of algebraic theory basically reduces to clever algorithms for effi-
ciently recovering the errors given [S].

There is a useful vector space interpretation of [S]. The output code word [v]
defines an n-dimensional vector space [ $ ]V with 2n elements. The set of input code

words generates a 2k-dimensional subspace of [ $ ]V denoted by [ $ ]U . This leaves a sec-
ond subspace, called the complimentary space of dimension 2n–k. The received code
word [r] can be anywhere in [ $ ]V . From the above relations, it can be seen that the
syndrome [S] is that component of [r] that is orthogonal to the code word subspace
[ $ ]U . Figure C.1 shows this interpretation.

We now consider what is gained by all of this encoding and decoding. The fol-
lowing development is designed to show the dominant behavior of the coding. To
start, let Pc = 1 − Pe be the probability that one of the n encoded bits (the common ter-
minology is to call these bits “chips”) is decoded correctly. Assuming that the deci-
sion on one chip is independent of the decision on another, the probability P = 1 − P,
that the whole code word is decoded correctly is simplyP Pc

n= . Note that P is related
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to but not the same as the final individual bit error rate. For a code the corrects
exactly t errors, but no more, the word error probability

P m
m t

n

=
= +
∑Probability ( chips in error)

1

In the limit of high Ec/N0 (energy per encoded chip), the first term in the sum
dominates, so we can write

( )P t +≈ Probability chips in error1

Assuming that each chip in the code word is decoded independently, we have

( ) ( )Probability +1 chips in errort C P Pt
n

e
t

e
n t= −+

+ − −
1

1 11

≈ +
+C Pt

n
e
t

1
1

whereCt
n
+1 is the binomial coefficient and again for large Ec/N0. From Chapter 5, for

binary transmission, the best expression for the chip error rate is

( )
( )

P Q E N

Q x e dz

z
e

e c

z

x

z

=

=

≈

−
∞

−

∫

2

1
2

1

2

0

2

2

2

2

π

π

for large z. The chip energy/bit is related to the bit energy/bit by the relation nEc =
kEb, since we are transmitting n chips in the same time as we would transmit k bits.
Combining all of these relations yields

P C
r E N

ek
n

b

rN N

t

b≈








−

+

1

4 0

1

0

π
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[r]

[S]

[r]

[S]

[U]
〈

Figure C.1 The syndrome vector is the component of the received vector that is orthogonal to
the subspace spanned by the code words.



The bit error rate, Pb , is proportional to the word error rate. What we are after is
an order of magnitude estimate that is controlled by the exponential term in the for-
mula above, so we write

[ ]P eb
rE N t

b≈ − +
0

1

Now if we did not encode, the bit error rate would be in similar fashion

P eb
E Nb≈ − 0

First, note the probability of error for a chip is greater than if we just sent the bit.
This is because the encoded chip is shorter in duration, so Ec < Eb. But the error cor-
recting capability produces a net gain as long as a figure of merit

( ) ( )β = + = + >r t k t n1 1 1

For the [6, 3, 1] code we considered above, we have β = 1. This code provides no
real gain for all of the effort to encode and decode.

We mention the popular set of block codes known as the Bose-Chaudhuri-
Hocquenghem (BCH) codes. These codes have a general structure, for an integer m,

n

n k mt

m= −
− ≤

2 1

Table C.4 lists BCH codes for m = 5. In that table we have calculated the code
rate r, and also β.

As can be seen, β is smaller for low and high values of r, and tends to peak near r
= 0.5. We can show this for BCH codes as follows. Take the second equation defin-
ing the code with the equals sign and substitute the expression for â. The result is

( ) ( )β = −k n k mn

Now for fixed m, and hence n, differentiate with respect to k to find k = n/2 max-
imizes the expression, which in turn gives rmax = 1/2.
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Table C.4 BCH Codes for m = 5

n k T r

31 26 1 0.839 1.68

31 21 2 0.677 2.03

31 16 3 0.516 2.06

31 11 5 0.355 2.12

31 6 7 0.195 1.54



C.2 Convolutional Codes

The coding structure for convolutional codes is entirely different than that for block
codes. The basic coding structure is shown in Figure C.2.

The input data enters into the set of three shift registers from the left. After every
shift we compute 2 bits, Y1 and Y2, according to the logic shown. The mathematical
operation is the XOR. Thus, for every 1 bit in, there are 2 bits out, producing a rate
1/2 code. The two individual data streams are then merged together. The number of
registers—three in this case—is called the constraint length K = 3. The codes can be
generalized with larger values of K (7 to 11 in most cases) and by adding additional
logic to produce more output bits Y3, Y4, and so forth. The code notation is obtained
from the particular combinations of those delay elements connected to the XOR. In
this example the output Y1 can be represented by the 3-bit vector [1, 1, 1]. Converting
this string to octal notation, we have 78. Consequently, this code is denoted by [5, 7]8.

To see the encoder operation (Table C.5), we start with an input code

[ ] [ ]u = 11011, , , , ,K

and calculate step by step the output code word [v].
From the table we see that the encoded data stream is

[ ] [ ]v = 1101100, , , , , , ,K

It is very instructive to consider the coding of two different input sequences A =
[0, 0, 0, m1, m2, …], and B = [1, 0, 0, m1, m2, …] for the [5, 7] code discussed so far.
Here, m1 and m2 denote arbitrary bits. Table C.6 shows the states of the three shift
registers as the coding progresses.

We now make an extremely important observation. No matter what the next
bit is in either message, the output bits will be the same for the same input bit, m.
This  is shown in Table C.7.

What this means is that after the first 6 received bits (2 out for 1 in), we can
merge the correlation processes. The largest correlation up to this point would be
the survivor. There are other bit combinations that produce this type of result, both
at the start of the message and further down. The correlation decision process can
then be vastly simplified.

This result has been formalized as follows. The concept is a finite state machine
(FSM). The last k – 1 registers define 2k–1 states. In the case at hand there are four
states generally labeled, a = 00, b = 10, c = 01, and d = 11. We start by loading in two
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Output Y1

Output Y2

Input
D D D

Figure C.2 Convolutional encoder.



zero (state a). The first bit is placed in the first register. We now clock the system
producing 2 output bits according to Table C.5, and depending on whether the first
bit is a 1 or a 0. Note that the first information bit has moved into the second register
and the state is [b0]. We continue this process to obtain the state machine transition
matrix as shown in Table C.8.

The most useful presentation of this concept is the trellis shown in Figure C.3.
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Table C.5 Convolutional Encoder Operation

Time
Step

Reg #1
(input bit) Reg #2 Reg #3 Bit Y1 Bit Y2

1 1 0 0 1 1

2 1 1 0 0 1

3 0 1 1 1 0

4 1 0 1 0 1

5 1 1 0 0 0

Table C.6 Encoding Different Input Bit Patterns A and B

Reg A1 Reg A2 Reg A3 Reg B1 Reg B2 Reg B3

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

Table C.7 Encoding Same Input Bit Patterns A and B

Reg A1 Reg A2 Reg A3 Reg B1 Reg B2 Reg B3

m2 0 0 m2 0 0

State

Legend

Input bit 1

Input bit 0

d = 11

c = 01

b = 10

a = 00
t1 t2 t3 t4 t5 t500 00 00

00 00 00

00 00

10

10 10 10 10

10 10

01 01 01 01 01 01 01

11 11

11 1111

11 11 11
Codeword
branch

Figure C.3 Encoding state space trellis for the [3, 5], k = 3 convolutional code.



On each transition from one state to the next, Figure C.3 shows the 2 bits of
encoded data. For instance, a transition from state [a] to state [b] always produces
the 2-bit pattern [1, 1]. From this figure we also verify that the two t sequences [A]
and [B] merge after the third input bit.

C.2.1 Punctured Codes

The example discussed so far produces convolutional codes with rate r = 1/n, where
n is the number of combinatorial circuits [A, B, …] that we choose to add. But what
about codes like r = 2/3? Codes of r = k/n (generally) are easy to obtain from block
codes, as shown in Table C.4. In Figure C.4 we show a convolutional coding struc-
ture that produces an r = 2/3 code. In this case we shift in 2 bits at a time and per-
form the indicated operations, then take 3 bits out. In the figure we see two groups
of two shift registers.
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Table C.8 Coder
Transition Matrix

Current
Input
State

Input
Input
Bit

Final
Output
State

00 (a) 0 00(a)

00(a) 1 10(b)

01(c) 0 00(a)

01(c) 1 10(b)

10(b) 0 01(c)

10(b) 1 11(d)

11(d) 0 01(c)

11(d) 1 11(d)

Input

Output

k = 2 input bits; n = 3 output bits; L = constraint length = 2 groups of k bits

Figure C.4 Rate 2/3, K = 2 encoder.



The constraint length is, by convention, K = 2, not K = 4.
The coding and decoding trellis states for this code can be generated in the same

manner as before. The only problem is that these structures become much more
complex. The neat solution to this problem, which is commonly used, is to take a
code like r = 1/2, as shown above, and throw away 1 out of every 4 encoded bits.
This produces a rate 2/3 code; this process is called puncturing. Which of the 4 bits
eliminated is determined by computer simulations. Table C.9 shows a particular set
of punctured codes for the case where the rate is of the form, r = n/(n + 1). The num-
bers in ( ) are the octal notation of the encoder connections as just described.

C.2.2 Decoding Convolutional Codes

Just like the block codes, the optimum decoder would correlate the received code
word with all possible code words. The one with the closest match would be taken
as the message. The Viterbi decoding algorithm implements this concept by taking
advantage of the coding trellis of Figure C.3. This idea is presented in Figure C.5.

In Figure C.5, the top row is the input sequence from the previous coding exam-
ple, and the second row is the corresponding output sequence as previously noted in
Table C. The third row represents the decoded bits of the received signal, errors and
all. Refer back to Figure C.3 along with Figure C.5. Now start at time t1. From Fig-
ure C.3 we see that that the [a] to [a] transition with an input bit of [1] produces the
output bits [0, 0]. But the received sequence [Z] at this point is [1, 1]. There are two
disagreements as noted in Figure C.5. This is known as the branch metric. Again
back to Figure C.3—we see that the output bit, for an input bit of [1], is the bit pair
[1, 1]. There are no disagreements with the received bit pattern as noted on Figure
C.5.

The decoding is simple. Proceed from node to node and determine the corre-
sponding branch metrics. Starting from t1, there is only one correct path through the
trellis as established in the encoding operation. For each path we keep a running
total of the appropriate branch metrics, called the path metric. When two paths
merge, the path metric with the smallest (not the largest in this normalization) is
kept, and the other is discarded. If there is a tie, then one must flip a coin to choose
one path and continue. A wrong guess produces errors. This process continues to the
end of the message. Finally, the surviving path with the lowest metric is selected for
output.

Unlike block codes, convolutional codes do not have a specific length. In theory,
at least, the encoded data stream could go on forever. At the receiver, this becomes a
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Table C.9 Punctured Code Patterns

Code Rate 3 4 5 6 7 8 9

1/2
1 (5)
1 (7)

1 (15)
1 (17)

1 (23)
1 (75)

1 (53)
1 (75)

1 (133)
1 (171)

1 (247)
1 (371)

1 (561)
1 (753)

2/3
10
11

11
10

11
10

10
11

11
10

10
11

11
10

3/4
101
110

110
101

101
110

100
111

110
101

110
101

111
100



problem, of course, since one never reaches the end of the message so decoding can
begin. In many practical cases associated with the wireless industry, the codes are
terminated. For cell phone operation, the analog voice is converted into digits by a
device called a vocoder that operate on blocks of data, called frames, roughly 5 to
20 msec long. The other possibility is to artificially truncate the path metric evalua-
tion at some point and select the best match as the survivor. Notice that if the wrong
path is chosen, there can be a large number of errors. The result of this is that the
error pattern in convolutional codes tends to arrive in bursts as shown in Figure C.6.

C.2.3 Hard Versus Soft Decoding

Note that in both the block and convolutional decoders, a decision was made as to
whether an encoded chip was a 1 or a 0 before the decoder. This operation is called

C.2 Convolutional Codes 205

State

Legend

Input bit 1

Input bit 0

d = 11

c = 01

b = 10

a = 00
t1 t2 t3 t4 t5 t500 00 00

00 00 00

00 00

10

10 10 10 10

10 10

01 01 01 01 01 01 01

11 11

11 1111

11 11 11

Figure C.5 Decoding trellis for the [3, 5], k = 3 convolutional code.
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Figure C.6 Burst nature of convolutional code error patterns.



hard decoding; computers like 1s and 0s. The ideal decoder would recover the chips
one at a time. We can write then

r d nk k k= +

As discussed in Chapter 5, the optimum detector would perform the correlations

D v r pp p m m
m

N
k= ≤ ≤ −

=

−

∑ ,
0

1

0 2 1

and choose the largest as the message. This is called a soft decision decoder. By mak-
ing hard decisions, the decoder is suboptimum and there is a theoretical loss of 2.5
dB.

The problem with block codes is that it is difficult to modify them for soft deci-
sion decoding. The same is not true for convolutional codes. But as we have empha-
sized many times here, some quantization is required for computer operations. In
other words, how many bits should we use to represent [r]? The established answer
from simulations and theory is that 3 bits of quantization produces a decoder that
recovers 2 of the 2.5 dB of loss of the hard decoder.
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A P P E N D I X D

Trivia Question
Trivia Question: Who coholds the earliest patent awarded in spread spectrum tech-
nology?

Amazing Answer: The Hollywood actress Hedy Lamarr. She is probably best
known for her role as Delilah in the 1949 movie Samson and Delilah.

With colleague George Antheil, she discussed radio guided torpedoes. The
problem was how to keep the radio link from being jammed. She suggested the idea
of frequency hopping, as described in Chapter 6. Antheil provided the synchroniza-
tion concept that kept the transmitter and receiver hopping in unison, they were
awarded UP Pat. No. 2292387, on August 1, 1942.
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Receivers, 10–11

data recovery, 11
DSPN multipath, 154
frequency offset, 10
ideal correlation, architecture, 70
matched filter, 69–73
phase offset, 10–11
rake, 153–54
timing offset, 11
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