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ELECTRIC FLUX DENSITY

Metal
conducting

- dielectric
spheres =

material

Figure 3.1 The electric flux in the region between a
pair of charged concentric spheres. The direction and
magnitude of D are not functions of the dielectric

between the spheres.
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The electric flux passing through any closed surface is equal to the total charge enclosed
by that surface.

S

B AR
\ S normal ,

N\
N\

H/’

AS

P '-' )Q;\

Dy

Figure 3.2 The electric flux density Dg at P arising
from charge Q. The total flux passing through ASis
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E— O

To illustrate the application of Gauss’s law, let us check the results of Faraday’s
experiment by placing a point charge Q at the origin of a spherical coordinate system 'b
(Figure 3.3) and by choosing our closed surface as a sphere of radius a. /\/

V4
Solution. We have. as before, }
0
42 A
At the surface of the sphere,
0
Ds = tma™

The differential element of area on a spherical surface is, in spherical coordinates
from Chapter 1,

dS =r’sinfdf d¢ = a*sinf d d¢
or
dS =a’sinf@do dé a,

The integrand is

Ds.dS =

5 . o .
a-sinf df d¢pa, -a, = — sinf df d
4mra? ¢ 4 ¢

leading to the closed surface integral

=2 A=
= sin6 d6 d¢
p=0 j.;—fp 4m

2 Q - erQ
fﬂ T{—cosﬁ)ufw}z : s-d¢ =0
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Figure 3.3 Applying Gauss's law to
the field of a point charge Q on a
spherical closed surface of radius a. The
electric flux density D is everywhere
normal to the spherical surface and has
a constant magnitude at every point on it.

APPLICATI FF GAUSSO SOMRASYMMETRICAL
ARGE DISTRIBUTIONS
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e a closed surface which satisfies two conditions:
1. is everywhere either normal or tangential to the closed surface, so
that /M Wecomes either O Q or zero, respectively.

2. 0On that portion of the closed surface for which "-# ® not zero, O

wWEEI ODWE O

we cannot show that symmetry exists
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Example (Flux density of infinite uniform line charge):

Line charge §..
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e
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Figure 3.4 The gaussian

surface for an infinite uniform line
charge is a right circular cylinder of

length L and radius p. D is
constant in magnitude and

everywhere perpendicular to the
cylindrical surface; D is parallel to

the e;nd faces.

NN

A closed right ci
choosen as

A
Q= D_g*dS:Dsf

X
Q}V
&
S

cyl
L 2w
= D_gf f pdddz = Ds2mpl
z=0 J =0
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a‘cylinder of radius ” extending from &
n surface and shown in Figure 3.4.
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Example (Flux density of Coaxial Cable): 'bco

Q™
W\

Conducting

cylinders

Figure 3.5 The two coaxial
cylindrical conductors forming a
. coaxial cable provide an electric
¢ N\ flux density within the cylinders,

rb\ given by D, = aps/p.

Two c@l cylindrical conductors. )
of radius cand the outer of radius «y each infinite in extent.

Th
@e distribution of ” on the outer surface of the inner conductor.

roort

A right circular cylinder of length 0and radius " fwhere & ” @ is necessarily
chosen as the gaussian surface;
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0 =D2nplL

The total charge on a length Oof the inner conductor is
L 2n
0= f f psadddz =2malps
=0 J =0
from which we have

il a
Ds=L p=4  Gw<p<bH)D
p p >

This result might be expressed in terms of charge per unii ! gty because the

innerconductor hasc“ ¥ coulombs on a meter length, a ce, letting”

¢, .
p— L .\§\
_ EH‘DHP fb
Identica@ﬁi line charge.

Thetotal charge on outer surface must bw\g

0 Q}q"m .

The surface charge on the deer is found as:

Enb‘{'ﬂinumr cyl — _-HHLJDEJHHGF cyl
Or \) )
E )
’E‘\ PSS outer cyl — — E}:'S,inncr cyl

Choosing aWlinder of radius " i b, for thegaussian surface:

0= Ds2nplL (p = b)

KV\“Q Ds; =10 (p = b)

c_)QAn identical result would be obtained for” @
'b 1 Thus the coaxial cable orcapacitor has no external field (we have proved
that the outer conductor isa i s h i),and ttheve is no field within the center

: D& * conductor.

\
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1 Our result is also useful for a finite length of coaxial cable, open at both
ends, providedthe length L is many times greater than the radius b so that
the nonsymmetricalconditions at the two ends do notappreciably affect the
solution. Such a device isalso termed a coaxial capacitor.

Let us select a 50-cm length of coaxial cable having an inner radius of | mm and an
outer radius of 4 mm. The space between conductors i1s assumed to be filled with air.
The total charge on the inner conductor is 30 nC. We wish to know the charge density

on each conductor, and the E and D fields.

Solution. We begin by finding the surface charge density on the inner cylinder,

Qinncr oyl 30 x 1077
2ral. 2w (10-3%0.5)

=0.55 uC/m’

28 inner oyl =

The negative charge density on the inner surface of the outer cylinder is

Quulcr cyl —30 x ID_I; 9
outer ov == = = - = —2._39 Cl'r B
Plover et = 30 bL . 27(4 % 10 9)(0.5) p-
The internal fields may therefore be calculated easily:
. 107%(9.55 % 106 0.55
D, =5 _ 10D 23 om?
p P P
and
D 0.55 x« 107 1079
E, = & - = Vim

@ 8854 x1025, o

Both of these expressions apply to the region where | = p = 4 mm. For p = 1 mm

or p > 4 mm, E and D are zero.
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DIFFERENTIAL VOLUME ELEMENT (Introducing the Divergence) .
D=Dy=D,ga,+D,a,+D,a ‘\Q

APPLI CATI ON OF GAUSSO0OS LAW: 6
N

Figure 3.6 A differential-sized gaussian surface about
the point P is used to investigate the space rate of
change of D in the neighborhood of P.

\ .
®
Choose a cloge u%ace the small rectangular box, centered at P, having sides
of lengths 3 3Q.

AssumeD) most constant over the surface.

TO%I nformation about the way D varies in the region of our small surface.

.th value of D at the point P
Q Dy = Dypa, + Dypa, + Doga;

>
% Apply Gaussods | aw
\
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Since the surface element is very small, D is essentia@%nstant (overthis
portion of the entire closed surface). .
X
Approximate the value of ‘O at this front face. Theg, f ce is at a distance of—
from P(the small change iD may be adequately r&‘%nted by using the first two terms
of theT a y |-sene® expansiofor D.) Q’
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_aD,
+ = ——Ax Ay Ag
front  Jback  OX

_aD,
+ = —=Ax Ay Az
right  Jiek 0¥

o, N
f +f = —ZAxAyAz \Q
top bottom az v
Collecting all results;

. S
fl}-.ﬁi (EDI + 9D, + dﬂ:) Ax Ay Az ")
5 ] dx dy dz S &

aD, aD, aD,. .
fu-d.‘i:{g:( — 4+ —=4 “)ﬁu»
5 dx dy oz

al) aD, aD.
~ 4+ Y+ = | » volume Av
dx dy az

Charge enclosed in volume Av = (

OT
| EXAMPLE 3.3 |

Find an approximate value for the total charge enclosed in an incremental volume of
10~ m? located at the origin, if D = ¢ siny a, — e *cosy a, + 2za, C/m’.

Solution. We first evaluate the three partial derivatives in (8):

a0,
dx
a0,
dD.
0z

= —e¢ "siny

At the origin, the first two expressions are zero, and the last is 2. Thus, we find that
the charge enclosed in a small volume element there must be approximately 2Awv. If
Av is 107" m’, then we have enclosed about 2 nC.
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DIVERGENCE .
AND MAXWELLG6S FI RST EQUATION'b
>
From previous discussion, allowing the volume elementguto shrink to zero /\/
4

. . i D -dS
(aﬂ_‘ N aD, N aﬂ%) - lim fe 0

= lm = = p, 0
dx dy dz Av Av—0 Av P Vp

This could be done for any vector Ato findB =& for a small closed surfa%Q}

leading to

>

(H'AI " dA, " dA:\ lim _]f.;ﬁt -dS
dx dy Az | av—0  Avp

. \
The divergence of A is defined mathematically as;_ ,\\6

e A dS
Divergence of A =div A = lim fs—

Ap—l Av

5

Definition: The divergence of the ve%?;m ux densidyis the outflow of flux from a
small closed surface per e as the volume shrinks to zero.

A positive divergence for tor quantity indicates a sourceof that vector
guantity at that point. S|m|Ia negative divergence indicates a sink.

: al, aD, aD.
dvD=| — 4+ — 4+ — (rectangular)
dx dy dz

4
N\ | e
divD=—=—ipD,)+ - — +— (cylindrical)
V\“Q pap LT 0 e Tz

C.JQ . 1 8, , 1 a3 . | 8Dy .
dvD=——»(rD)+ ——(smé D)+ — —— spherical
& rl H'r{ " rsind EH{ 2 rsiné g (sp )
QK The divergence is an operation which is performed on a vector, but that the result
is a scalar.
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Find div D at the origin if D = ¢ * sinya, — e " cosya, + 2za..
Solution. We use (10) to obtain \'/b

aD abD, aD.
divD = — - -
v dx + dy * az

=—¢ *sinv+e "siny+2=2

The value is the constant 2, regardless of location.
If the units of D are C/m”, then the units of div D are C/m". This is a volume charge
density, a concept discussed in the next section.

D3.7. In each of the following parts, find a numerical value for div D at the
point specified: (a) D = (2xyz — y'a, + (x’z — 2xy)a, + x’ya.C/m? at
Pa(2,3, —1): (b)) D = 2pz2sin® pa, + pzlsin2¢ as + 2p%z sin® ¢ a,C/m? at
Pplip=2,¢=110°, z = 1) (c)D = 2rsinf cos ¢a, +rcosdcosghay, —
rsinga, C/m” at Pe(r = 1.5, 8 = 30°, ¢ = 50°).

Ans. —10.00; 9.06; 1.29

Combine the following Egs.; (VE

oD + 9Dy + 9D: ) _ lim fsD-dS _ lim =
ax a‘l-' dr o Av—sl Ayp o Av—=0 Avp = Py

(8D, aD, aD.
‘dwll—(al + 3y + El'z)
To obtain s Vv
. \
N
\\;\/
V\“Q =

é’his is the first of Maxwelld s  feguations as they apply to electrostatics

~

0

andsteady magnetic fields, and it states that the electric flux per unit volume

'b leaving avanishingly smallvolume unit is exactly equal to the volume charge

% density there.This equation is called the poi n't form o.f(per@rEtus s o6s
Q& R volume basis for a vanishingly small volume, orat a ppint.
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