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Energy and Potential

ENERGY EXPENDED IN MOVING A POINT CHARGE IN AN
ELECTRIC FIELD

Origin

AV
Suppose we wish to move a charge Q a\d@e dL in an electric field E. The

force on Q arising from the electric field ﬁ

Fg = QE
The component of this force in )hé@?gction dL which we must overcome is

Fgp =F-a, = QE-a;
The force that we must Q)p.ly‘ls equal and opposite to the force associated with

the field,
. 6\ Fﬂppl = —QE-a;
N

The differe/\%/ork done by an external source moving charge Q is
V4

V\“QQ dW = —QFE - dL

c—ng'his differential amount of work required may be zero under several conditions:

e There are the trivial conditions for which E, Q, or dL is zero.
'b e E and dL are perpendicular, charge is moved always in a direction at right
angles to the electric field.

®
0 Energy must be expended to move against the field.
\
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integrating, S

final %'b
W=_0 E.dL ¢

init V\QQ
S
N

The work required to move the charge a finite distance must be determined by 6

THE LINE INTEGRAL N

Final position

Initial position

Figure 4.1 A graphical interpretation of a line integral in a uniform field. The line
integral of E between points B and A is independent of the path selected, evenina
nonunif{:}vrm field; this result is not, in general, true for time-varying fields.

\ngt using vector analysis we should have to write
K final

C.JQ/ W=—0 E.dL
% whereEL = component of E along dL.

init
* Assume a uniform electric fieldis selected for simplicity. The path is divided into
Q six segments AL1,AL2,...,AL6, and the components of E along each segment
\
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are denoted by EL1,EL2,...,EL6. The work involved in moving a charge Q from B .
to A is then approximately .\6

W=—-0Q(E AL, + Ejx2 AL, +--- 4+ EjsALg) /\'/b

W =—0(E AL + Er+ ALy +-- - + Eg - ALg) \QQ.
Ei=Ey=---=E E

W =—-QE-(AL; + AL; +--- 4+ ALyg) %Q/\

e Work involved in moving the charge depends only on Q,%Q Lpa, @
vector drawnfrom the initial to the final point of the path chose

e |t does not dependon the particularpath we have s sqalong which to
carry the charge.

®
Remember: ’\§\

AN
dl.=dxa; 4 dyva, +dza; (rectangular)
dL =dpa, + pddag + dza; (cylindrical)

dl.=dra, +rdfag 4 rsind dgag,  (spherical)
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EXAMPLE 4.1

We are riven the nonuniform field
E = ya; + xay + 2a;

and we are asked to determing the work expended in carrying 2C from B{1,0, 1) to
AD.E, 0.6, 1) along the shorter arc of the circle

ol
.1"+_'lr'1=| r=1

Solution. Weuse W = —Ef;‘ E - dL.. where E is not necessarily constant. Working
in rectangular coordinates, the differential path L is dra, + dva, + dza;, and the
integral becomes

A
w=_gf E.dL
B

A
= —Ef (va; + xa, + 2a;)-(dra, + dya, +dza;)
B

0.8 06 1
—Ef _wi.r—!f .rri_v—4f iz
| 0 |

where the limits on the integrals have been chosen to agree with the initial and final
values of the appropriate variable of integration. Using the equation of the circular
path (and selecting the sign of the radical which is correct for the guadrant involved),
we have

0.8 T
H-"=—2f -...-“l—.rldx—zf W1—yvidv—0
1 ]

— 08 0.6
— _[.w’l — x% 4 sin 11]1 - [_w,f'l — v 4 sin ‘J.*]D
= —{0.48 +0.927 -0 - 15371V — {048 + 064 — 0 -0}
= —1.96]

v
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EXAMPLE 4.2

Again find the work required to carry 2C from B to A in the same field, but this time
use the straizght-line path from B to A.

Solution. We start by determining the equations of the straizht line. Any two of the
following three equations for planes passing through the line are sufficient to define

the line:
Ya—Ya
¥ — vg = x —xm
Xsa—XIn
Ia—1ip
z- :g=—[‘| — ¥Vg)
¥a— ¥r
Ig—X
I—IXg= - _31:—:5—]
:,q L
From the first equation we have
= —¥Hx — 1}
and from the second we obtain
z=1

Thus,

0.8 0.6 1
H"=—2[ _‘rd.t—!f .td_‘r—4[ dz
| 0 |

08 06 v
— _ B | o 7
_5.1; (x — lydx _[ [L 3] dy

= —1.96]

e,
Example® (infinite Line C@As a final example illustrating the evaluation of
the line integral, weinvestigadeseveral paths that we might take near an infinite
linecharge. The fiel Qeenobtained several times and is entirely in the radial
direction;

Infinite line
/< —\\ charge p, P,
dL.=dpa,
c dL=p,dgpa,

&
{a) ()

\&
Q Figure 4.2 (a) A circular path and (b) a radial path along which a charge of Q is carried
in the field of an infinite line charge. No work is expected in the former case.
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The work done in carrying the positive charge Q about a circular path of radius
ppcentered at the line charge, as illustrated in Figure 4.2a.

The work must be nil, for the path is always perpendicular to the electric field

intensity, or the force on the charge is always exerted at right angles to th
direction in which we are moving it. RQ

dpanddzbe zero, so dL = p;dea, \

2nep © s'b
final
W=_0 AL

——a,-pdda
it 2M€0Pr ’ K
2
= — doa,-a; =0
Qf ZTEQ ¢pap-ay =
We will now carry the charge fromp = atop = 'I@'a radial path (Figure
4.2b). Here dL = dp apand P
LW _ N
final b
PL prL dp
W = —Q a d,ﬂﬂ = —Q E—
init ZHE{]J’:' g g a 23‘1’(_—'{] o
Qpr . b
N = — In —
2mep  a

Because b is larger than, a, dé(b/a) is positive, and the work done is negative,
indicating that the e@\mource that is moving the charge receives energy.

DEFINIEON F POTENTIALDIFFERENCE AND POTENTIAL

/\/’b W—_Q_[HTH-M.

Kpgtential difference V: the work done (by an external source) in moving a unit
C)Q positive charge from one point to another in an electric field,

'b fimal
Q& .s Potential difference = V = — f E-dL
\

imit
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®
V,gSignifies the potential difference between points Aand Band is the work done S 6
inmoving the unit charge from B (last named) to A (first named). ,b\
Thus, in determining V5, B is the initial point and Ais the final point. C\/

Potential difference is measured in joules per coulomb, for which the v \Q
isdefined as a more common unit, abbreviated as V.

Hence the potential differencebetween points A and B is C)Q/\

A
F_.elg:—f E-dL 'V &
B

From the line-charge example of Section 4.2 we found% the work done
intaking a charge Q from p = bto p = awas . \

N\
0pL | b\:b
n-—
2men  a

ﬁn‘

~

Thus, the potential difference between‘p% atp=aandp=>hbis

W b
Vab = — = PF In —
o L‘rel; a
Potential difference in the T a point charge:We can try out this definition by

finding the potential diffgrence@ between pointsA and B at radial distances r,and
rgfrom a point charg@ Hoosing an origin at Q,

° E=FEa = i,,:ar
0\6\ Amegr-
/\’b dL. = dr a,

0

) 0 (1 1 ]
Vig = E-dL= ir = .
@ A [ Jry 'fl'JT'E'!]‘F2 “ 4meg \ra s,

\ Vaip=V4—Vp |
%Q/

o“&

THE POTENTIAL FIELDOF A POINT CHARGE
The potential difference between two points located at r = r, and r = ry in the
field of a point charge Q placed at the origin:
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<
@’
QM
\

0 0 I 1 ]
—_ [ E-dL=- Ir = —
Vap = [ [ dmeqr? “ dmeg \ra  rp,

o oy

Define V = 0 at infinity.
Let the point at r = rgrecede to infinity, the potential at r,becomes

N
v, =2 V\“Q

dmegr,
o S
C)

V= 435@!' $'b

Q/4Ame,r joules of work must be done in carrying a unit cha@r m infinity to
any point r meters from the charge Q.

Expressing the potential without selecting Ec c zero reference is
accomplished by identifying r, as r and letting Qﬁ\% be a constant. Then

V = Q + C,
dmegr

C,; may be selected sothat V = 0 at an eired value of r. We could also select
the zero reference indirectly by electinkto et VbeV,atr = r,.

Equipotential surface is a s composed of all those points having the
same value of potential.
e All field lines would erpendicular to an equipotential surface at the

points where theygintgrsect it.
e No work is i NN in moving a unit charge around on an equipotential

surface. « o
e The equi \tial surfaces in the potential field of a point charge are

sphirpge ered at the point charge.

OTENTIAL FIELD OF A SYSTEM OF CHARGES:

ential field of a single point charge Q,; and locate at r4, for a zero
ence at infinity;

6 CONSERVATIVE PROPERTY
<e%r

1

dxeplr —

The potential arising from n point charges is;
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-]
Um
Vir) —
e Z-Jf?re;;lr—r,,,l

=]

If each point charge is now represented as a small element of a continuous
volume charge distribution p,Av, then;

r1dAw w2 iAn vl T bW \Q
Vi = 2121 ool ek ST oL i Vx

dzeplr — | dwen|r — 2 - dmeg|r — ra
As the number of elements to become infinite; COQ/

I- r I:.Ir..
viy— [ v &

St dregr — 1

e |r — r'|is that distance from the source point to the int.
L

e V(r) is determined with respect to a zero reference p %kat infinity.
R
\

For a line charge or a surface charge distribution: ¢

N

Vie) — pL{r'ydL’
- T dmwea|r —r|

Vir) — ps(r'yd§
o 5 dmweg|r — |
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To illustrate the use of one of these potential integrals, we will find V on the 7 axis for
a uniform line charge oy in the form of a ring, p = a, in the 7 = 0 plane, as shown
in Figure 4.3,

Solution. Working with Eq. (18), we haved " = ad¢’.Tr = za,.r" =aga,_, [r—r| =
far + 2. and

2

dmeg/at + 2° a 2:—.;|a...-'|:'.'E +

V— fi" pradg’ e
0

6

EII:[.‘J. 0,z

a dg’

{ Figure 4.3 The potential field of a ring of uniform line
/\ charge density is easily obtained from V = [ g (F)dL’y

0’ (dreolr — F|).

%xpression for potential (zero reference at infinity),
A
Q} Vi=— f E-dL
C.; nc
& or potential difference, B
Q A 1"'_.1_E='|-"'_q—1l"ﬂ=—f E - dL
\

B
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which is not dependent on the path chosen, regardless of the source of the E
field.
No work is done in carrying the unit charge around any closed path,

j{E-{IL:ﬂ

Conservative Property of static E

This is true for static fields, but not for time-varying fields. C)Q/\

lllustration: consider the dc circuit shown in Figure 4.4. Two point& B, are
marked, and conservative property states that no work is involvedN carrying a
unit charge from A through R2 and R3 to B and back to A W &1, or that the
sum of the potential differences around any closed path is 280!

A

= z
i

r ...;,-I" i |
'--.__—___."',I ﬁ'| R,

"
r e -

]
i)

Figure 4.4 A emple do-cincut problem that must ba
sohved by applying f E - dL = 0 in the form of Kirchhoff s
voltage kaw.

'O’
More general form of Ki hh.ogis circuital law for voltages.

Any field that s tig&n equation of the form of conservative property, (i.e.,
where the clo.se%ns integral of the field is zero) is said to be a conservative
e

field. (energ)b\ rved in carrying a charge around a closed path).

IIIustratioy nsider the force field, F = sinmp ap. Around a circular path of
raglius\p\; pl, we have dL = pde ap, and

-

P 4 Pk, |
\‘ :){:Fndl.=r‘ E.iﬂ:T,rJ|ﬂi.=p|d'¢rH,F_=" o Sin oy did

= 2o Sin o

The integral is zero if p1 = 1,2,3,..., etc., but it is not zero for other values of
pl, or for most other closed paths, and the given field is not conservative. A
conservative field must yield a zero value for the line integral around every
possible closed path.
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POTENTIAL GRADIENT

:; T N %Q}
- _ E _ r >
x‘ o B /

Figure 4.5 A vector incremental element of
length AL is shown making an angle of @ with an
E field, indicated by its streamlines. The sources
of the field are not shown.

X0

V:—fE-dL

For a short element of Ieng@glong which E is almost constant, leading to AV:

\' AV = —E-AL

AV = —EALcos#

In a Imm@ Ehe derivative dV/dL

dL = —F cosf

%\\@n) In which direction should AL be placed to obtain a maximum value of
A

Answer) The maximum positive increment of potential, AV,,,,, will occur when
cos 8 = —1, or AL points in the direction opposite to E. For this condition,

dv
dL max
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1. The magnitude of the electric field intensity is given by the maximum
value of the space rate of change of potential (with distance).

2. This maximum value is obtained when the direction of the distance
increment is opposite to E or, in other words, the direction of E is opposite /\'/b
to the direction in which the potential is increasing the most rapidly.

+40 +30 V\QQ

Y 20 N
/

+ 60

+ 10
=70
+ 80
V=190 >>
Fe

Figure 4.6 A potential field is shown by its equipotential
surfaces. At any point the E field is normal to the
equipotential surface passing through that point and is
directed tﬁward{h@ more negative surfaces.
The direction inQwhichNthe potential is changing (increasing) the most rapidly is
(From the skegc {e left and slightly upward.

It seemsdikel{that the direction in which the potential is increasing the most
rapidly jspPgfpendicular to the equipotentials (in the direction of increasing
poten WI\and this is correct, for if AL is directed along an equipotential, AV = 0

efinition of an equipotential surface. But then:
AV =—E.-AL =0

Xnd as neither E nor AL is zero, E must be perpendicular to this AL or
'bc—) perpendicular to the equipotentials.

Letting a, be a unit vector normal to the equipotential surface and directed
0& . toward the higher potentials.

\
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The electric field intensity is then expressed in terms of the potential, 6

E=-2Y| AR
dL max 4
which shows that: V\QQ

the magnitude of E is given by the maximum space rate of change of V ggl
the direction of E is normal to the quipotential surface (in the directi%

decreasing potential). 'b‘—)

Because dV/dL|max occurs when AL is in the direction of a%s fact is

expressed by writing K .
v
T — L

dv
dL| . dN .\ \
And fb
A%
TR
A\

The operation on V by which - E is QptaiRed is known as the gradient, and the
gradient of a scalar field T is definegrp

dT
Gradientof T = grad T = —ay
dN

Q\ .

E' E=—gradV
o\ \

Taking th%bdiﬁerential of V

V4

0 d‘.*’—avd'—l—avd‘—l—avd”
?\9 T 3y YT
u¥ we also have

N
C'DQJ dV = —E-dL = —E,dx — E,dy — E. dz

%’b Because both expressions are true for any dx, dy, and dz, then

\0 .

Page




Dr. Naser Abu-Zaid; Lecture notes on Electromagnetic Theory(1); Ref:Engineering

E, =

E. =

aVv
“ax

av
ay

aVv
a9z

These results may be combined vectorially to yield

Electromagnetics; William Hayt& John Buck, 7th & 8th editions; 2012 & Wikipedia

aV

av
E = —( a, +
dx

dy

a, +

aV

o
e

RS

To evaluate the gradient in rectangular coordinates

aV
grad V = —a,
ax

aVv

aVv

+ —ay, +

dy 0z

The del vector operator may be used

.V

V=—a,+

d d

ax E z

This allows us to use a very compac;(xpkssion to relate E and V

Qv

E=-VV

av
ax

VV = —a, + —a, + —a,

aV aV

ay dz

(rectangular)

v
dp

VV = —a, +

Lav. v
pap * " Bz °

(cylindrical)

=t

1av. 1 av
rsing 9¢ ¢

(spherical)
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EXAMPLE 4.4 .

several numerical values at point P: the potential V| the electric field intensity E, the
direction of E, the electric flux density D, and the volume charge density p,.

Solution. The potential at P(—4, 5, 6) is
Vp =2(—4)*(3) — 5(6) = 66 V

Given the potential field, V = 2.3:3_1; — 5z, and a point P(—4, 3, 6), we wish to ﬁndb\
4

Next, we may use the gradient operation to obtain the electric field intensity,
E=-VV = —4xya, — Exza}. + 5a. V/m
The value of E at point P is
Ep = 48a, — 32a, + 5a; V/m

and

|Ep| = /482 4 (—32)2 + 52 = 57.9 V/m
The direction of E at P is given by the unit vector

ap p = (48a, — 32a, + 52.)/57.9
= 0.829a, — 0.553a, + 0.086a.

If we assume these fields exist in free space, then
D = E = —35.4xya, — 17.71x%a, + 44.3a, pC/m’

Finally, we may use the divergence relationship to find the volume charge density that
is the source of the given potential field,

py = V-D = —354y pC/m*
At P, p, = —106.2 pC/m>.
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THE ELECTRIC DIPOLE
An electric dipole, or simply a dipole, is the name given to two point charges of
equal magnitude and opposite sign, separated by a distance that is small
compared to the distance to the point P at which we want to know the electric
and potential fields.

The distant point P is described by &pgencal coordinates r, 6, and ¢ = 90¢, in
view of the azimuthal symmetry

Q (L_ 1‘]_ Q R-R
~dmeg\ R Ry}  dmen RIR

z = 0 plane is at zer&po¥ehtial, as are all points at infinity.
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x
-
I ,_-'"-' L]
Ry -~ To distant
o point #
-~ .
-~ -~
.-d""; -"'--rl
e F o
-~ -~
U ~ -~ 0
kS .-"'--l-l .-""'r.
Y .___.-" - -_____-"
v -~
A.___.-" .-.-__J.-f
- %, -~
)] S e

7 &
h__.-"
A e
*~"R,—R,=dcos ) %

—@
®
N\
Figure 4.8 (3) The geometry of the problem of an
electric dipole. The dipole moment p = Odis in the a;
direction. (b) For a distant point P, Ry is essentially
parallel to Az, and we find that F> — R, :gl::cus a.
For numerator, we use the approximation A
R — Ry=dcosé@
And for the denominator, we may use, X
IQ R, =1
Then; .
[
% vV — Qdcos@
T dwegr?
-4
v 1av 1 8V
E=-VV=—(—a 4+ -—a;+ —a
(dr " a0 rsinéd deg ¢

/\/() i Qd Cos H‘ Odsiné
4 I"..- = — dy — ———g
@ stur dmegr-

C)é E= od ——(2cosf a, +sinf ay)

'b 4meqr
o&

\
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Figure 4.9 The electrostatic field of a point dipole with its moment in the a;
direction. Six equipotential surfaces are labeled with relative values of V.

If the vector length gg{ted from - Q to +Q is defined as d.
Define the dipole moNedt as Qd and assign it the symbol p, then
®

/\/fb\' p=0d
‘Q\\‘“ yo Prar
v dmegr?

K _ 1 r—r
C—)Q V= 4HE{||I‘—I‘"|2IJ. [r —r'|
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ENERGY DENSITY IN THE ELECTROSTATIC FIELD

Wg = %(Q[V] + Vo + 03V =

V., is the potential at the location of Q,,, due to all point charges except Q,,

S

For continuous charge distribution, each charge is replaced by p:é ’b

itself.

summation becomes an integral

WE - % f Pu V
vol

dv

1=

]

m=N

Z an 1{*”

m=I

Q™

(1

Wi :;f D.-Edv =
~ Jwol

[ E.;.E2 dv
vol

lllustration: Calculate the energy stored in th
coaxial cable or capacitor of length L. \Q

We found previously that N g

N

ctrostatic field of a section of a

ST

ps IS the surfacegcharg®density on the inner conductor, whose radius is a.

L p27 pb 2.2 2.2
a mla

WE:%\[\/. fe{] pfpdpdqbd:z—ﬂsln
o Jo a - €0

2

€L

A
I

%QJS% o= [ Epdo = [

Page

1

€opP

aps b
—In—-
£Q a

b
a

y of solving the problem: choose the outer conductor as zero-potential
e, and the potential of the inner cylinder is then:

Assuming the surface charge density ps at p = a to be a volume charge density
Py = ps/t, extending fromp =a—t/2top =a+t/2, then
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a+i 2 h °
WE:J;f pl:‘ifdi—f':%f f f p—sa‘{—jln— dp d¢ dz '6
~ Jol - €0 a \

So, again we obtain

Wi =

ﬂlﬂ% ln(b,"ﬂ}HL V\QQ

€0
You can recognize this as the energy of a capacitor, since for a capacitor Q}

We =10V,
And the total charge is Q = 2maLp,, combined with V, obtained pre%(y.

To obtaine an expression for energy density in J/m3, recon® *

®
f D-Edve \
vol \
Rewrite for an elemental volume; ’ 'b

dWg = 1D -Edv

Wi =

tod =

From which, energy density is obtained 3%’

W, :$:%D'E
C)
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