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Chapter 10 

Transmission lines 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8
th

 

edition 2012;  

 

Dr. Naser Abu-Zaid Page 2 9/19/2012 

TRANSMISSION LINES AND THEIR TIME DOMAIN WAVE 
EQUATIONS 

Most common types include: 
 

 
Coaxial cable 

 
Cross-section of microstrip geometry. Conductor (A) is separated from ground plane 

(D) by dielectric substrate (C). Upper dielectric (B) is typically air 
 

 
Cross-section diagram of stripline geometry. Central conductor (A) is sandwiched 

between ground planes (B and D). Structure is supported by dielectric (C 
 

http://en.wikipedia.org/wiki/Dielectric
http://en.wikipedia.org/wiki/File:Coaxial_cable_cutaway.svg
http://en.wikipedia.org/wiki/File:Microstrip_geometry.svg
http://en.wikipedia.org/wiki/File:Stripline_geometry.svg
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Unshielded twisted pair cable with different twist rates 

 
 
 Two or more conductors surrounded by a dielectric. 
 Used to transmit electric energy and information bearing signals form one 

point to another. 
 Lossless TL implies perfect conductors and perfect dielectrics. 
 Distributed parameter network. 
 Voltages and currents vary spatially besides time variation. 
 TEM: Transverse ElectroMagnetic. 
 
Divide the line into small segments, and consider a differential length z  of the 
line: 
 

 
 
 

CandGLR ,,, are per unit length parameters. 

http://en.wikipedia.org/wiki/File:UTP_cable.jpg
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 is the skin depth of the conductor. 

For each line, the conductors are characterized by   ,   ,      , and the 
homogeneous dielectric separating the conductors is characterized by  ,  ,  . 
 
Application of KCL and KVL gives the general TL equations in time domain (or 
telegraphist's equations) 

 
 

 
t

tzI
LtzRI

z

tzV











,
,

,
 

 
 

 
t

tzV
CtzGV

z

tzI











,
,

,
 

Performing some mathematics on the above equations leads to the so called TL 
wave equations in time domain 
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LOSSLESS PROPAGATION  0GR  

 Lossless Line, perfect conductors and perfect dielectrics surrounding. 
 All power input to the line reaches the output. 
 Voltage wave equation reduces to: 

   
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2 ,,
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z

tzV
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A general solution to the above equation is assumed to be of the form: 
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Substituting the forward propagating part of the solution into the wave equation 
gives the condition: 

 
s

m
LC

v
1

  

This is also clear from a dimensional check of the voltage wave equation. 
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HOW VOLTAGE IS RELATED TO CURRENT? 

Using telegraphist equations  0GR , and the assumed solution for  tzV , , 

then performing differentiation w.r.t    then integration w.r.t time, one may 
obtain: 
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The characteristic impedance    of the line is the ratio of positively traveling 
voltage wave to current wave at any point on the line.

  

 
SINUSOIDAL VOLTAGES 

Assigning for forward and backward propagating voltages a sinusoid of the form 

  tVo cos  

Then replacing t  with 
pv

z
t   for forward wave and t  with 

pv

z
t   for backward 

wave: 
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Define the phase constant as: 

 
m

rad
v p


 

 
It represents the change in phase per metre along the path travelled by the wave at any instant   

  
Remind yourself; 

rads
s

rad
t   

radm
m

rad
z   

frequencyspatial
 

 

   ztVtzV of   cos,  

   ztVtzV ob   cos,  

     zVzVzV obf cos0,0, 
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       at a constant   

 
 

 
       at a constant time 

 

 2  

 m
f

vp







2

 
The wavelength of a sinusoidal wave is the spatial period of the wave—the distance over which the 

wave's shape repeats 

 
TIME HARMONIC WAVES (COMPLEX ANALYSIS) 

   xjxe jx sincos   

   xjxe jx sincos 
 

    cceex jxjx 
2

1
Recos  

http://en.wikipedia.org/wiki/Sinusoidal_wave
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Define: 
Instantanous complex voltage 

  tjzj
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And the phasor voltage (dropping
tje 
) 
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To obtain time domain representation from frequency domain representation: 

1. Multiply   zj

os eVzV   by 
tje 
. 

2. Take the real part of the result. 
 
Q: How to obtain frequency domain representation from time domain 
representation? 
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TL WAVE EQUATIONS AND THEIR SOLUTIONS IN PHASOR 
FORM 

Recall: 
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Rewriting voltages and currents in terms of their phasor representations, then 

performing the indicated differentiations and dropping the 
tje 
 term, one can 

obtain: 
 
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To obtain the wave equations in frequency domain, differentiate (1) w.r.t.   then 
substitute (2) into the result. 
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The propagation constant   is defined as: 

  
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j

ZYCjGLjR


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And the solution to the voltage wave equation is given by: 

  zz

s eVeVzV    00  

  zz

s eIeIzI    00  

The relation between voltage and current in frequency domain is found from 
telegraphist equations namely: 
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Substituting the expressions for  zVs  and  zI s , then matching exponents, one 

may obtain: 
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Reconsider: 

  zz

s eVeVzV    00  

  zjzzjz

s eeVeeVzV    00  

     
    

WaveBackward

z

WaveForward

z zteVzteVtzV     coscos, 00  

 

 
Voltage traveling along   -direction at times 

      and       ;. 

 
LOSSLESS PROPAGATION (REVISITED) 

LCjGRLossless   0  

LCLCjj   &0  

  zjzj

s eVeVzV    00  

LC
vp

1





 

   ztVtzV f    cos, 0  

   ztVtzVb    cos, 0  

LOW-LOSS PROPAGATION 
CGandLR  loss-Low  

Reconsider: 
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Using the first three terms in the binomial series expansion, namely: 
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Then, the attenuation and propagation constants may be approximated by: 
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Similar argument may be applied to the characteristic impedance: 
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Note that: 

 GandR . 

   is a non-linear function of frequency   , then 



pv  is frequency 

dependent. 

 The group velocity 




d

d
v g   also depends on frequency Signal distortion. 

 A constant phase and group velocities may be obtained, even when 

00  GandR . This occurs when: 

C

G

L

R


(Distortionless line) 
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
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POWER TRANSMISSION AND LOSS 

  zjzzjz

s eeVeeVzV    00  

  zjzjzjzj

s eeeVeeeVzV     00  
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  zjzjzjzj

s eeeIeeeIzI     00  

And since 
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



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Considering the forward waves 

  zjzj
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The Instantaneous power  tzp ,  is defined as: 

     tzItzVtzp ff ,,,   

Is evaluated to give 

     



  ztzte
Z

V
tzp z

o

o
coscos, 2

2

 
And the time-averaged power is given by: 

 
T

dttzp
T

p ,
1

 

This may be evaluated to give: 

 
oZ

z

o

o
e

Z

V
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2

2

2





  

The same result may be obtained more easily if the average power is defined as: 

    zIzVp ss

*Re
2

1
  

This may be evaluated to give: 

 
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
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




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

  zjzj

o
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Z

V
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0Re
2
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 
oZ

z

o

o
e

Z

V
p  cos

2

2

2





  

As a measure of power drop along a lossy line, consider: 

   
oZ

o

o

Z

V
p cos

2
0

2


  

So 

    zepzp 20   

Then 

 

 
ze

zp

p
2

0
  

In dB 

 

 
z

zp

p
69.8

0













 1010LogdB  inLossPower  

 

 
WAVE REFLECTIONS @ DISCONTINUITIES 
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  zjz

oii eeVzV    

  zjz

orr eeVzV   

At     the load voltage and the load current are: 

oroiL VVV   

L

L
L

Z

V
I   

 oroi

o

oroiL VV
Z

III 
1

 

So 

   oroi

LL

L
oroi

o

L VV
ZI

V
VV

Z
I 

11
 

Rearranging and solving for the ratio 
oi

or

V

V
 

oL

oL

oi

or

ZZ

ZZ

V

V




  

The voltage reflection coefficient at the load is defined as: 







j

L

oL

oL

oi

or

L e
ZZ

ZZ

V

V
 

Also since 

oioioroiL VVVVV   

Solve for the so defined voltage transmission coefficient: 

 j

L

oL

L

oi

L

L e
ZZ

Z

V

V





2
1  

 What is the condition required for the load to receive all transmitted power (all 
power input to line)? 

oL

oL

oL

L ZZ
ZZ

ZZ





 0  



Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8
th

 

edition 2012;  

 

Dr. Naser Abu-Zaid Page 18 9/19/2012 

Load matched to line when  

oL ZZ   

 What fractions of incident power are reflected and dissipated by the load? The 
load in this case is assumed to be located at    . 

   

 
o

o

Z

L

o

o

Lz

Z

z

o

o

Lzi

e
Z

V

e
Z

V
zp









cos
2

cos
2

2

2

2

2

















 

 Also the power reflected from the load is: 

 
oZ

L

o

o

Lzr e
Z

V
p  cos

2

2

22








  

(It would be a good exercise for you to derive the above result) 

 
So, from the above we have: 

*2


i

r

p

p
 

And 

2
1 

i

t

p

p
 

For a wave incident from a semi-infinite TL to a second semi-infinite TL, the 
second may be treated as a load 

0102

0102

ZZ

ZZ




  
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VSWR 

(Measure of the degree of mismatch of a TL) 

 

 
min

max

zV

zV
sVSWR

s

s
  

Assuming lossless line, and starting with  

  zjzj

s eVeVzV    00  

Then 

   















j

LL

zj

L

zj

s

e
V

V
ce

eeVzV

0

0

0

sin

,

 

The above expression may be written as: 

   



















00

2
00

2
cos21

VVwhere

ZeVeVzV
j

L

zj

Ls








 

Transferring into time domain 
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     

  

  

partStanding

2
cos

2
cos2

partTraveling

cos1,

0

0






















 







tZV

ztVtzV

L

L

 

Portion of the first incident wave reflects back and propagates in the line, and 
interferes with an equivalent portion of the 2nd incident wave to form a standing 
wave, the rest of the incident wave (which does not interfere) is the traveling 
wave part. 
 

WHAT IS THE VOLTAGE MAXIMUM AND MINIMUM AND WHERE 
DO THEY OCCUR? 

   
  
  





















zj

L

zj

zj

L

zj

zj

L

zj

s

eeV

eeV

eeVzV

2

0

0

0

1

 

 
Maximum’s occur when: 

,....2,1,0,22   mmz   

Hence; 

 


 


mz 2
2

1
max  

Then  

    

 L

zz

zj

L

zj

s

V

eeVzV






 

1

1

0

2

0max
max


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Minimum's occur when: 

  ,....2,1,0,122   mmz   

So; 

  


 


12
2

1
min mz  

Then  

    

 L

zz

zj
L

zj
s

V

eeVzV






 

1

1

0

2

0min
min



 

And the VSWR is obtained easily as: 

 

  




1

1

min

max

zV

zV
sVSWR

s

s

 

1

1






s

s

 
 

 
Plot of the magnitude of      as found from      

 zj

L

zj

sT eeVzV 0
  as a function of 

position,  , in front of the load (at z = 0). The reflection coefficient phase is   , which 

leads to the indicated locations of maximum and minimum voltage amplitude, as found 

from   


 


12
2

1
min mz  and  


 


mz 2

2

1
max

. 
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Implication:   maybe found from measured s , and  may be found from 

measured locations of maximum’s and minimum’s. Then the load impedance is 
known. 
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FINITE LENGTH TL’S (TL CIRCUITS) 
 

 

?inZ   and      ? z  

  zjzj

s eVeVzV    00  

  zjzj

s eIeIzI    00  

0

0
0

0

0
0

0

0 ,,
Z

V
I

Z

V
Ie

V

V j

LL











 
 

 

Define the wave impedance  zZw  at any   as: 

 
 
 zI

zV
zZ

s

s
w   

 
zjzj

zjzj

w
eIeI

eVeV
zZ














00

00
 

)(@ Hzf

gV

 

gZ  

LZ
oZ

Lossless 

+ 

- 

LI  

inV
LV+ 

- 

+ 

- 

0z  
lz   

inZ

inI  
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 
 

 zj

L

zj

zj

L

zj

w

ee
Z

V

eeV
zZ















0

0

0

 

 
 
 zj

L

zj

zj

L

zj

w
ee

ee
ZzZ














0  

Using Euler’s identity and the fact that 
oL

oL
L

ZZ

ZZ




 . Then  If evaluated at lz    

 

 
   
   zjZzZ

zjZzZ
ZzZ

L

L

w




sincos

sincos

0

0
0




  

 

   
   ljZlZ

ljZlZ
ZZ

L

L
in





sincos

sincos

0

0
0




  

 
Also a generalized reflection coefficient may be defined as follows: 

 

 zj

L

zj

L

zj

zj

zj

ee

e
V

V

eV

eV
z









22

2

0

0

0

0















 

   zj

L ez  2
 

 

      
L

j

L

j

L ee    02
0  

   lj

L el
 2  

Also, note that the wave impedance may be obtained as: 

 
 
 

  
  

  
  z

z
Z

e

e
Z

ee

ee
ZzZ

zj

L

zj

L

zj

L

zj

zj

L

zj

w




























1

1

1

1

0

2

2

0

0








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And @ lz  , the input impedance becomes; 

 
  
  lj

L

lj

L

win
e

e
ZlZZ





2

2

0
1

1











  

Note also that: 

   Ls VV   10 0  

So 

 
 L

sV
V




1

0
0  

Special cases: 
1) Half wave length line:  

,.......3,2,1,
2

 mml


 

 ml   

   
   



mjZmZ

mjZmZ
ZZ

L

L

in
sincos

sincos

0

0
0




  

Lin ZZ   

2) Quarter wave transformer:  

  ,.......3,2,1,0,
4

12  mml


 

Odd multiples of 
4


 

 
2

12


  ml  

   

    







































2
12sin

2
12cos

2
12sin

2
12cos

0

0

0




mjZmZ

mjZmZ

ZZ

L

L

in  

L

in
Z

Z
Z

2

0  

The problem of joining two lines having different characteristic 
impedances. Suppose the impedances are (from left to right)     and 
   . At the joint, we may insert an additional line whose characteristic 
impedance is     and whose length is    . We thus have a sequence 
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of joined lines whose impedances progress as    ,    , and    , in 
that order. A voltage wave is now incident from line 1 onto the joint 
between     and    . Now the effective load at the far end of line 2 is 
   . The input impedance to line 2 at any frequency is now 

            
   

 

   
 

Reflections at the    –     interface will not occur if          . Therefore, we can 
match the junction (allowing complete transmission through the three-line 
sequence) if     is chosen so that 

            
 

This technique is called quarter-wave matching. 

 
3) Short Circuit termination: 

0LZ  

     
     ljlZ

ljZl
ZZ in





sin0cos

sincos0

0

0
0




  

 ljZZ
sc
in tan0

 

 
4) Open circuit termination: 

LZ  

 
 

 
 lj

Z

lZ

Z

lZ
jl

ZZ

L

L

Z
in

L 





sin
cos

sin
cos

0

0

0lim







 

 ljZZ
oc
in cot0  

 

Note also that 0Z  may be found from measurements of short and open circuit 

terminations 

sc
in

oc
in ZZZ 0  
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1) The line is matched;  
The reflection coefficient is zero;      
The standing wave ratio is unity;     

300  

 300oZ  

 
s

mv 8105.2   

+ 

- 

inI  

LI  

inV LV+ 

- 

+ 

- 

0z  mz 2

inZ

 300LZ

)(100@

60

MHz

V

Example: 

1) Calculate the load reflection coefficient, the standing wave ratio, the wavelength 

on the line, the phase constant, the attenuation constant, the electrical length of 

the line, the input impedance offered to the source, the voltage at the input to 

the line, the time domain input voltage, the time domain load voltage, the time 

domain input current, the time domain load current, the average power 

delivered to the input of the line, the average power delivered to the load by 

the line. 

2) If a 300  load is connected in parallel with the first load then calculate: the 

reflection coefficient, the standing wave ratio, the input impedance offered to 

the source, the phasor input current, the average power supplied to the line by 

the source, the average power received by each load, the phasor voltage across 

each load, where is the voltage maximums and minimums and what are those 

values, the phasor load voltage. 
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                 or        

           offered to the voltage source 

 

    
   

       
         

The source is matched to the line and delivers the maximum 
available power  to the line. 
 

A transmission line that is matched at both ends produces no 
reflections and thus delivers maximum power to the load. 

 

No reflection and no attenuation; 

  30

0

00  


ljlj

sin eVeVlVV 

 

 6.130300   ljeV  

                      
 

                       
                             

     
   

   
                     

                              
The average power delivered to the input of the line by the source must all be 
delivered to the load by the line, 

       
 

 
         

   

 
2)       across the line in parallel with the first receiver. The load impedance is 

    .  
The reflection coefficient is 
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The standing wave ratio on the line is 

 
The input impedance is 

 
which is a capacitive impedance.  
 
The input current phasor is 

 
The power supplied to the line by the source is 

    
 

 
     

     

 
Since there are no losses in the line, 1.333 W must also be delivered to the load. 
 
This power must divide equally between two receivers, and thus each receiver 
now receives only 0.667W.  
 
Because the input impedance of each receiver is     , the voltage across the 
receiver is easily found as 

  zjzj

s eVeVzV    00  

   zj

L

zj

s eeVzV   

0  

    olj

L

lj

sin eeVlVV 8.85.380   

 o

lj

L

lj

in

ee

V
V 72300 










 Then 

    o

L

j

sL eeVVV 288200 00

0  
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The magnitude alone can be found from the power as

 

 
 

The voltage maxima is located at: 

 
with          and      , 

 
 
The minima are     distant from the maxima; 

 
 
The load voltage (at z = 0) is a voltage minimum.  
 
a voltage minimum occurs at the load if        , and a voltage maximum occurs if 

       , where both impedances are pure resistances. 
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SMITH CHART 
 The Smith chart is a graphical tool for high frequency circuit 

applications.  

 The domain of definition of the reflection coefficient for a loss-
less line is a circle of unitary radius in the complex plane. This 
is also the domain of the Smith chart. 

 
The goal of the Smith chart is to identify all possible impedances 
on the domain of existence of the reflection coefficient. To do 
so, we start from the general definition of line impedance (which 
is equally applicable to a load impedance when d=0) 

 
 

In order to obtain universal curves, we introduce the concept of 
normalized impedance 

 
The normalized impedance is represented on the Smith chart by 
using families of curves that identify the normalized resistance r 

(real part) and the normalized reactance x (imaginary part) 
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Let’s represent the reflection coefficient in terms of its 
coordinates 

                        
 

After some lengthy mathematicl manipulations (follow your text 
book), it may by shown that the result for the real part indicates 
that on the complex plane with coordinates               all the 
possible impedances with a given normalized resistance r are 
found on a circle with 

 
 
As the normalized resistance   varies from   to   , we obtain a 
family of circles completely contained inside the domain of the 
reflection coefficient           . 

 
 
Also the result for the imaginary part indicates that on the 
complex plane with coordinates               all the possible 
impedances with a given normalized reactance   are found on a 
circle with 
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As the normalized reactance    varies from    to   , we obtain 
a family of arcs contained inside the domain of the reflection 
coefficient           . 
 

 
 
 
Basic Smith Chart techniques for loss-less transmission lines 

 Given        Find      
Given        Find       

 Given    or      Find      and      @ a specified d. 

Given      or       ⇒ Find    and    

 Find      and      (maximum and minimum locations 
for the voltage standing wave pattern) 

 Find the Voltage Standing Wave Ratio s (VSWR) 

 Given        Find      
Given        Find      
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http://upload.wikimedia.org/wikipedia/commons/7/7a/Smith_chart_gen.svg
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Given Z(d) ⇒ Find Γ(d) 
1. Normalize the impedance 

 
2. Find the circle of constant normalized resistance   

3. Find the arc of constant normalized reactance   
4. The intersection of the two curves indicates the reflection 

coefficient in the complex plane. The chart provides directly the 
magnitude and the phase angle of       

Example: Find     , given 
 

                    with           
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Given Γ(d) ⇒ Find Z(d) 
1. Determine the complex point representing the given reflection 

coefficient      on the chart. 
2. Read the values of the normalized resistance   and of the 

normalized reactance   that corresponds to the reflection 
coefficient point. 

3. The normalized impedance is                  and the actual 
impedance is  
                                                   

 
 

Given    and/or       Find      and      
 

NOTE: the magnitude of the reflection coefficient is constant 
along a loss-less transmission line terminated by a specified 

load, since 

                                 
 
Therefore, on the complex plane, a circle with center at the origin and 
radius        represents all possible reflection coefficients found along 
the transmission line. When the circle of constant magnitude of the 
reflection coefficient is drawn on the Smith chart, one can determine 
the values of the line impedance at any location. 
 
The graphical step-by-step procedure is: 

1. Identify the load reflection coefficient    and the normalized load 
impedance    on the Smith chart. 

2. Draw the circle of constant reflection coefficient amplitude 
            . 

3. Starting from the point representing the load, travel on the circle 
in the clockwise direction (wavelengths toward generator), by 
an angle 

 
4. The new location on the chart corresponds to location   on the 

transmission line. Here, the values of      and      can be 
read from the chart as before. 
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Example: Given 
                    with                 
 
find  
 
         and             for               
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Given    and/or      Find      and      
1. Identify on the Smith chart the load reflection coefficient    or 

the normalized load impedance    . 
2. Draw the circle of constant reflection coefficient amplitude 

            . The circle intersects the real axis of the reflection 
coefficient at two points which identify      (when       
              ) and      (when                     ) 

3. A commercial Smith chart provides an outer graduation where 
the distances normalized to the wavelength can be read 
directly. The angles, between the vector    and the real axis, 
also provide a way to compute      and      . 

Example: Find      and      for inductive and capacitive 
loads 

                  ;  
And                  

Where             
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Given    and      Find the Voltage Standing Wave 
Ratio s (VSWR) 

 
The Voltage standing Wave Ratio or VSWR is defined as 

 

  L

L

s

s

zV

zV
sVSWR






1

1

min

max
 

The normalized impedance at a maximum location of the standing 
wave pattern is given by 

         
         

         
 

      

      
         

This quantity is always real and    . The VSWR is simply obtained 
on the Smith chart, by reading the value of the (real) normalized 
impedance, at the location      where   is real and positive. 
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The graphical step-by-step procedure is: 

1. Identify the load reflection coefficient    and the normalized load 
impedance    on the Smith chart. 

2. Draw the circle of constant reflection coefficient amplitude 
            . 

3. Find the intersection of this circle with the real positive axis for 
the reflection coefficient (corresponding to the transmission line 
location     ).  

4. A circle of constant normalized resistance will also intersect this 
point. Read or interpolate the value of the normalized 
resistance to determine the VSWR. 

 
Example: Find the VSWR for two different loads 

                  ; 
And                    

Where             
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Given         Find      
 
Review the impedance-admittance terminology: 

Impedance = Resistance + j Reactance 
           

Admittance = Conductance + j Susceptance 
           

Note: The normalized impedance and admittance are defined as 

 
Keep in mind that the equality 

 
is only valid for normalized impedance and admittance. The actual 
values are given by 

 
 

where    
 

  
 is the characteristic admittance of the transmission line. 

The graphical step-by-step procedure is: 
1. Identify the load reflection coefficient    and the normalized load 

impedance    on the Smith chart. 
2. Draw the circle of constant reflection coefficient amplitude 

            . 
3. The normalized admittance is located at a point on the circle of 

constant     which is diametrically opposite to the normalized 
impedance. 
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Example: Given 
                 with            find    . 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 


