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TRANSMISSION LINES AND THEIR TIME DOMAIN WAVE
EQUATIONS

i\
Most common types include: \QQ'
plastic jacket E y

dielectric insulator é

metallic shield
centre core
Coaxial cable °

O
Cross-section of microstrip g ~ Conductor (A) is separated from ground plane
(D) by dielectric (C). Upper dielectric (B) is typically air

Y
O
(\)‘b c
N
g& :

Q')& Cross-section diagram of stripline geometry. Central conductor (A) is sandwiched
% between ground planes (B and D). Structure is supported by dielectric (C
Y
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)
0’0

o0

Unshielded twisted pair cable with different twist raten@

Used to transmit electric energy and information

point to another.

% Lossless TL implies perfect conductors and pggf
Distributed parameter network.

/
‘0

>

[ )
Two or more conductors surrounded by a dielectric. Qf&
]
0’

< Voltages and currents vary spatially besides#m€ variation.
% TEM: Transverse ElectroMagnetic. \Q

Divide the line into small segments,

line;

&>

iy signals form one

electrics.

@ zg!nsider a differential length Az of the
L

[ [
T Az LAz LAz T Az
I - - KCL I +Al
A S | x_‘.»"‘x — Y _‘._H;_.’ B A T '\_w_;"\ AN ——
+ e ———————— e e e e S +
rd ¢ h

f _{ﬂ Y Y
[ ot 'r,[' i

% A < Y V+AV
! GAz < — CAz |
\ (_,-?' i
Y !

,
T
- e

‘ Figure 10.3 Lumped-element model of a short transmission line section
with losses. The length of the section is Az. Analysis involves applying
Kirchoff's voltage and current laws (KVL and KCL) to the indicated loop

and node, respectively.

R, L, G, and Care per unit length parameters.
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Parameters Coaxial Line Two-Wire Line Planar Line (\
N

prel I por o, Q
(6 <= g, 0 — b) (8 <= ) (8 <= 1 v

} h d

L (Him) L B cosh ™! = ud @&

R (Q/m) ! [1+1] 1 2

ﬂ a T 2a W
G (S/m) E T ow p
b _, i
1 sh™' —
§ a cos 2a
C(Ffm) 2xE TE EW
In E cosh™" d Hd
a ) 2a w = d)
(ALY
§ = —— is the skin depth of the conductor (\)0‘
VTflcoc ‘7

For each line, the conductors are chamﬁc' d by o., u. & =¢, and the
homogeneous dielectric separating the?gv tors is characterized by o, u, €.

Application of KCL and KVL gives @,general TL equations in time domain (or
telegraphist's equations)

=RI(z,1) |_M
LAY _ gy (1) c VY
Q 0z ot
Performing somg mati®matics on the above equations leads to the so called TL
wave equatiom iMe domain
28 _ V@Y, (a1 re)V Y Rev(z)
, oz ot ot
2 2
N\l '(i’t) _catzt) I(z’t)+(LG+ rc)?! (@), RGI(z,t)
0z ot ot
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Ry 5 ! /
E Y ¥ \QQ'
Ve R, E y
T e Q}
gﬁm-_tramr_- fa—————— coaxial ling ———] load >‘%
' {a)
E field
== === H field
Zi—v ¥
(b)
LOSSLES¥ PROPAGATION (R=G =0)
s Lossless Line, onductors and perfect dielectrics surrounding.
* All power input to line reaches the output.
% Voltage wgve u§tion reduces to:
A o™V (z,t) o™V (z,t)
) — s =LC—3—
oz ot

A gen%ks ution to the above equation is assumed to be of the form:

z z e -
V(z,t)= fl(t_V}L fz(t+v):v +V

SK;ituting the forward propagating part of the solution into the wave equation
Q) ives the condition:

&b% v=—= )

e This is also clear from a dimensional check of the voltage wave equation.
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HOW VOLTAGE IS RELATED TO CURRENT? (\
Using telegraphist equations (R G= 0) and the assumed solution for V z t
then performing differentiation w.r.t z then integration w.r.t time, one ma)@

. 1(z,t)= Ev[fl(t—éj—fz(t+§ﬂzl++l‘ %@&v
H nal
_ BQ

The characteristic impedance Z, of the lin ratlo of positively traveling
voltage wave to current wave at any pomt on@llne

Z,=Lv= L

o
L)

- .

Figure 10.4 Current directions in waves having positive voltage
polarity.

a4 SINUSOIDAL VOLTAGES
As&@ for forward and backward propagating voltages a sinusoid of the form

Yw V. cos(wt + @)

z z
@&Then replacing t with t—— for forward wave and t with t+v— for backward

p p
: (b,, wave:
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v<z,t>=wo\co{wti$z+¢J \\;\

p

O
V,(z,t)= No‘cos(a)t —% z Q)&v

Vb(z,t)—No\cos(a)t+%z %‘b?‘)

Define the phase constant as:

racy < }
m
It represents the change in phase per metre along the path(t‘i) the wave at any instant

Remind yourself;

With (assuming ¢ =0)

rad

ot > — Q’d
3
pz— ' dh—) rad

Lo, lal  frequency

\./f t)=N,|cos(wt - fz)
Q (20)=V,oslot + f2)
N VE0) -V, 20) - o)

?\90
o

o
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N

=
T =g
h-i
|
Fd [
h-i

=
2 S
T — N
v(z,t) at a constant z Q\"
_ O
¥
Al
. /..
) 0 5\/1 ﬂ\/ﬂ
2 2 2
A+ .

D%z, t) at a constant time

Q& BA=2r
-\6,'» 2=22 "

The wavedenigt a sinusoidal wave is the spatial period of the wave—the distance over which the
wave's shape repeats

Y4
@TH\AE HARMONIC WAVES (COMPLEX ANALYSIS)
Y" e™ =cos(x)+ jsin(x)
@& e " =cos(x)— jsin(x)
(bu% cos(x):Re{er}:%ejX +CC

Y
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Sidx)=|m{ejx}=2—lje"x +cC (\
Consider: Q"
V, (2.)=N,[cos(wt - 2+ 9) ?*9
M &
- %[[\/o‘ej(co)]ej(m)ej(wt) e %\ Q0
Define:

Instantanous complex voltage &
V. (z,t)=V, e*¥2ei z

And the phasor voltage (droppmg el “4

o z) V, i (\)‘b»

V,(z,t)=N,|cos Z+0)
— |V, | Re@¥et20) |

r -
Ve i(B2)gie
\ﬁ/_d
Vs(2)
To obtain time domaig r&oresentation from frequency domain representation:
1. M@ ( )—V ptis? by e/,
ake the real part of the result.

Q: How (@raln frequency domain representation from time domain
represen ago

“Q
A
%Q)
O
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Two voltage waves having equal frequencies and amplitudes propagate in opposite i\

directions on a lossless transmission line. Determine the total voltage as a function@
of time and position.

Solution. Because the waves have the same frequency, we can write their combina-
tion using their phasor forms. Assuming phase constant, £, and real amplitude, V,
the two wave voltages combine in this way:

Vir(2) = Voe 787 4 VyetiP: = 2V, cos(Bz)
In real instantaneous form, this becomes
V(z, 1) = Re[2V, cos(Bz)el] = 2V, cos(Bz) cos(wt)

We recognize this as a standing wave, in which the amplitude varies, as cos(8z), and
oscillates in time, as cos(wr). Zeros in the amplitude (nulls) occur at fixed locations,
Zn = (mm)/(28) where m is an odd integer. We extend the concept in Section 10.10,
where we explore the voltage standing wave ratio as a measurement technique.

FO

Recall:
——@(z,tﬁLalg’t

- =GV(z,t)+C—2

TL WAVE EQUATIONS AND II—T@ OLUTIONS IN PHASOR

Rewriting voltages@ rrents in terms of their phasor representatlons then
performing the cated differentiations and dropping the e!”" term, one can
obtain: &
(\;b M@ oL -0
dl (z :
)6 jocy @) @)

d
\@iln the wave equations in frequency domain, differentiate (1) w.r.t. z then
stitute (2) into the result.

%'& 42V, (2)
dz?®
@' ¢°1,(2)

dz?

=(R+ joLYG+ joCW,(z)

=(R+ joL)G+ jowC)I(2)
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The propagation constant y is defined as:

And the solution to the voltage wave equation is given by: ?y:
The relation between voltage and current in frequency domai cgrmd from
telegraphist equations namely: &
_dvd;(zh(m A NOREN
VA °
. °
LB (6 1 jucy, (o)
z
Substituting the expressions for VS(Z) and IS(Z} n matching exponents, one
may obtain:

A lossless transmission line is 80 cm long and operates at a frequency of 600 MHz.
The line parameters are L = 0.25 pH/m and C = 100 pF/m. Find the characteristic
impedance, the phase constant, and the phase velocity.

Solution. Because the line is lossless, both R and & are zero. The characteristic

impedance is
Zo — L [).25>-<11D—6_0Q
"TYCc Tyi0x102 "

Because y = a + jf = J(R+ JoL )G + jwC) = jo/LC, we see that
B = wv'LC = 21 (600 x 10°),/(0.25 x 10-6)(100 x 10-'2) = 18.85 rad/m

%Q) Also,
D 27(600 x 10°) )
== =2 % 10° s

@
18.85
N p
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Reconsider:
V. (2)=V, 7" +V, e’ Q',

V,(2)=V, e *’e ¥? +V, e e/ A Q
V(z,t)=V, e cos(wt — fz)+V, e** cos(wt + fiz) Yv
Forward Wave Backward Wave &

2
#1

Voltage traveling +z-direction at times

t andt = At;.
>

LOSSLESSYROPAGATION (REVISITED)

ﬁi?essaRzG:O—mfzja)\/LC

‘.b\hﬂ V, (Z):VO+ N Lk +V0‘ejﬂz
N R e
Y\S V, (z,t)=V, cos(wt — )

V, (z,t)=V, cos(wt + fz)
Q’)& LOW-LOSS PROPAGATION

Low -loss > R<<wlLand G << «C
&bﬂ Reconsider:
%
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y=a+jB=+J(R+ joL)\G + joC) (\
1 1 Y4
. R, G ) N
= JoNLC|1+— | [1+——
7o ol JoC ?\9
Using the first three terms in the binomial series expansion, namely: &
1 X x° <
M+x)z=1+Z-"—+..... for x <<1 C‘O
2 8
Then, the attenuation and propagation constants may be approx by:

Similar argument may be applied to the char

Note that:

e G_QV

1)
% fis a norR function of frequency ,B(a)) then V, =E is frequency

depend@&nt,

d
% Thr@up velocity V4, = d—; also depends on frequency = Signal distortion.

\Qonstant phase and group velocities may be obtained, even when
=0 and G #0. This occurs when:

%é R_G
;‘bﬂ L C (Distortionless line)

Y
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S

iosC
e ¥
Q>
q&&
e

Suppose in a certain transmission line G = 0, but R is finite valued and satisfies the
low-loss requirement, R < wL. Use Eq. (56) to write the approximate magnitude
and phase of Zj.

Solution. With G = 0, the imaginary part of (56) is much greater than the sec-
ond term in the real part [proportional to (R/wL)]. Therefore, the characteristic
impedance becomes

[L R .
Zo(G=0)=. /=1 —j—) =|Zole'*
ol ) C( ijL) |Zole

where |Zy| = ./L/C, and 8 = tan"'(—R/2wL).

D10.1. Atan operating radian frequency of 500 Mrad/s, typical circuit values
for a certain transmission line are: R = 0.2 Q/m, L = 0.25 uH/m, G =
10 S/m, and C = 100 pF/m. Find: (a) «; (b) B: (¢) A; (d) v,: (€) Zp.

Ans. 2.25 mNp/m; 2.50 rad/m; 2.51 m; 2 x 108 m/sec: 50.0 — j0.0350 Q

|
é POWER TRANSMISSION AND LOSS
V,(2)=V, e e ¥ 1V, ete "

é V.(2)= M* el e e i 4 M“ej‘s’fe”’zejﬂZ

Dr. Naser Abu-Zaid Page 14 9/19/2012




Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8"

edition 2012;
I.(z)=|1;]e e *?e ¥ +‘I(,*‘e“"fe"‘ze””Z (\

And since Q',

+

V.- V_ No ( + +) jo Q
_ 0 __ W —e _ J Zg
ZO_I+_ I— I+e _‘Zo‘e

(o]

Then é

1(2)

Considering the forward waves
V

sf

Isf

+

VL e—aze—jﬂz

_V_Oe”‘zejﬁZ cb?\?
o Z, ‘%
lel? e eI &.
.

(Z)
eJ(/J e %Za” JﬂZ'

The Instantaneous power p Z, t |s deflned as:

Is evaluated to give

p(z,t)="=-

This may be evalui.ve

.’

p:

i @w

e co ,b’z +0" cos(a)t PrL+o )

And the time—averaged po ;; {H\%n by:

p) =Tijp(z,t)dt

+2

O

—ei

2t cos(9 )

The sam(%ébf may be obtained more easny if the average power is defined as:

T@By be evaluated to give:

&gg} <p>=%Re{ .

Dr. Naser Abu-Zaid
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- Q;\

As a measure of power drop along a lossy line, consider: ?\&

cos(ezo ) @&
So ‘bc:o

Then

In dB

EXAHPLE 10.4

A 20-m length of transmission line is known to produce a 2.0-dB drop in power from
end to end. (@) What fraction of the input power reaches the output? (#) What fraction

of the input power reaches the midpoint of the line? (¢) What exponential attenuation
coefficient, ¢, does this represent?

Solution. (a) The power fraction will be
{(P(20))
(P(0))

()2 dB in 20 m implies a loss rating of 0.2 dB/m. So, over a 10-m span, the loss
is 1.0 dB. This represents the power fraction, 10~ %! = 0.79.
(c) The exponential attenuation coefficient is found through

B 2.0 dB
~ (8.69 dB/Np)(20 m)

A final point addresses the question: Why use decibels? The most compelling
reason is that when evaluating the accumulated loss for several lines and devices that

are all end-to-end connected, the net loss in dB for the entire span 1s just the sum of

the dB losses of the individual elements.
%Q'} WAVE REFLECTIONS @ DISCONTINUITIES

Y

=107"? = 0.63

— 0.012 [Np/m]
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Figure 10.5 \oltage wave reflection from a complex load
impedance. Q&

V.(z)=V, e **e ¥*

V. (z)=V, e**e¥* ,%‘b‘
At z = 0 the load voltage and the load current are:

VL :Voi +V0r &.
v :)
L=
. O
I =1, +1, = lb/ @‘\
L — Yoi or — 5 LVoi " VWo
z," %,

So Q
IL = Zi[\/oi _Vor \N; Zi[\/oi +Vor
o L L

Rearranging and solving for the r

% Voi
% . Z -2,
V Z +Z,

Oi

The voltage reflecti fflClent at the load is defined as:

4

Also sinc

V, =V, +V, =V, +T'V,
So@he so defined voltage transm|SS|on coeff|C|ent

?,

Q’}v What is the condition required for the load to receive all transmitted power (all
power input to line)?
Z -Z
I =0=="t—"2=7 =27,
Z +Z,
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Load matched to line when (\

% What fractions of incident power are reflected and dissipated by the load? TI@
load in this case is assumed to be located at z = L. \

2

=121 g2 003(0 '&

~ 2z, < -
Also the power reflected from the load is: Q

28,412 .
T Oé@ﬂ

[0}

<pr > z=L

So, from the above we have:

And

For a wave inciden a semi-infinite TL to a second semi-infinite TL, the
second may be trea s a load

. 6.’ = Zoz _201
r\ Zoz + Z01

A 50-22 lossless transmission line 1s terminated by a load impedance, Z; = 50 —
775 2. 1f the incident power is 100 mW, find the power dissipated by the load.
Solution. The reflection coefficient 1s

Ly —Zy 50— 75 =50

“Z.+Zv S0—ji5+50

=0.36— j048 = 0.60e793
Then

CQQ) (P = (1 = [T1)(P:) = [1 = (0.60)*](100) = 64 mW
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EXAMPLE 10.6
Two lossy lines are to be joined end to end. The first line is 10 m long and has a loss
rating of .20 dB/m. The second line is 15 m long and has a loss rating of 0.10 dB/m. /
The reflection coefficient at the junction (line 1 to line 2) 1s I = 0.30. The mnput

(b)) Determine the power transmitted to the output end of line 2.

Solution. (a) The dB loss of the joint is &
L;idB) =101 ( : =101 ( 1 =041 dB b
1 - OZ10 1 — |l—-|: - Og10 1 — 0.00 — b

[N

power (to line 1) 1s 100 mW. (a) Determine the total loss of the combination in dB. \Q

The total loss of the link in dB 1s now
LdB) = (0.20010) + 041 4+ (0.10015) = 3.91 dB

(b) The output power will be P, = 100 x 10-¥1 = 41 mW.

VSWR (\)O"

(Measure of the degree, of atch of a TL)

%'mz
VSWR =s —
S (Z) min

Assuming lossless line, and startle

re T v el

Then
V+ e V24T eJﬁZ),
sinceFL \F e
o V0
The above exp Yon may be written as:
9
(\;Q 1-|1 | +2v,|r e 2 cos(ﬁz %j

where V, =V,

\Qerring into time domain
@3“
@P
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V(z,t) =V, (1|, |)cos(at - A2) (\
Traveliﬁg part \QQ,'
+ 2VO\FL\cos(ﬂZ + i) cos(cot + &j ?‘
2 2 &
N 9 @

Standing part < )
interferes '/ :

Q) §
@Q

UM AND WHERE

WHAT IS THE VOLTAGE MAXIMUM AND M

DO THEY OCCUR™Q
V.(z)=V, e +T.e”}
=V, (e—jﬁz @(ﬁz%))

-V, e—jﬂ%mej(mzwr))

&

<~ *

. ,;6,-3

M:wr When:z,b’z 1 0. ——2mz, mM=012...
@*TZ:

o
%

»

v

max

=;—'81(2m7r+6*r)

Ve (@) =[Vo & 77 (L4 [ e ))

Z=Zmax

=V, (L+]1,])
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Minimum's occur when:
2pz+ 6. =—(2m+2r, m=012,....
So;

z =;—;([2m+1]ﬂ'+01—) Y\S
Then 6&

v.(2)],, =|% e (1 +|r,[e/@#+))

=V {t-Ir.) ‘%b

And the VSWR is obtained easily as: &.
L <z>|max 1

VSWR =s

H V|

W (1 +|F|)1i"’[r:,
I
|
|
| | | — (1=[T)YV,

| 02 ‘

|
|
|
|
i
|
|
|
F@=6m | F@ran | e+ 2 0
\\ =Lih+5 = PR 1
7 (@ + 5m) gﬁ@ 3m) gﬁ[qab )

?ﬁkthe magnitude of Vi as found from v _(z)=v, Vole 77 4|0 i) as a function of
t

% ion, z, in front of the load (at z = 0). The reflection coefficient phase is 8y, which
ads to the indicated locations of maximum and minimum voltage amplitude, as found

;‘bc:o from , ([zm+1]ﬁ+9)and max:E(mewar)-
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Implication: |F| maybe found from measured s, and 6 .may be found from
measured locations of maximum’s and minimum’s. Then the load impedance is

known.

Slotted
S0 2 line

Prohe and
carriage

G =0

Short circuit

Relative probe vollage

60 501 40

30 T 20 10 0

Distance scale {cm)

Load or
)'| short
1_‘,-" cireuit

A
\Qﬁ
@&v
>

[N

Figure 10.15 A sketch of a coaxial slotted line. The distance scale is on the

slotted line. With the load in place, s = 2.5, and the minimum occurs at a scale
reading of 47 cm. For a short circuit, the minimum is located at a scale reading of

26 crm. The wavelength is 75 cm.

Slotted line measurements yield a VSWE of 3. a 15-cm spacing between successive
violtage maxima, and the first maximum at a distance of 7.5 cm in front of the lead.
Determine the load impedance, assuming a 30-£2 impedance for the slotted line.

Solution. The 15-cm spacing belween maxima is A /2, implying a wavelength of
30 cm. Because the slotted line is air-filled. the frequency is f = ¢/3 = | GHz. The
first maximum at 7.5 cm is thus at a distance of A /4 from the load, which means that
a voltape minimum oocurs at the load. Thus [T will be real and necative. We use (92)

to write
l[_l_.s—l _5—J _]
T 541 541 3
S0
r— 2_ Zr — &n
3 Zu+ o
N which we solve for Z; to obtain
| 50
I ==fp==—=100
?5 L=397F
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FINITE LENGTH TL’S (TL CIRCUITS) ?\&

'@ILV T

Define the Y&/e impedance Z, (z) at any z as:
A\ V()
@ ZW(Z)_ IS(Z)

ARGV Y

%Q)& 2,(2)= I;e 7 +1,e"?
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Also a generalized reflection coefﬁuent?\y e defined as follows:
ipz oi262
j5z

~ei2i? |1—L|e1 (6r+2p2)

6: 1(0) =|r, |e/@*271D = | |ei@) =,
'\ " F(-1)=|r, [el2
Also, notg\%ﬁe wave impedance(en_wjaﬂqzl kjrerot;tj?izr}ed as:
L
\QQ’ Z,(2)=2, (e—jﬁz _rLejﬂz)
v —z <1+ |1-*L|ej(9r+2ﬁz)>
> “ %0 r e )
e 1+ 1(2)
QL _y, 1)

. a-TG)
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And @ z = -I, the input impedance becomes; (\
N

Note also that: Y\S
ZORAEN S
cb

So

Special cases:

1) Half wave length line: Q&.
/1 °
2
pl=mr Cb,

Z, cos(mz)+ jZ,3Amr)

°Z,cos mg}d\\) sinmz)
Z

Zin =Z

2) Quarter wave transformer:

g§ ;52 m=0123......
Odd multiples of

4
B' 2|II+1
)2

(\)cb,\éﬂ 2. Z, COS([Zm + 1];) +JZ, sir([Zm + 1]79
q Z COS([Zm + 1]72Tj +jZ, Sir([Zm + 1];)

> 2
Y» Zin - Z_O
Z,

The problem of joining two lines having different characteristic

impedances. Suppose the impedances are (from left to right) Z,, and

Zy3. At the joint, we may insert an additional line whose characteristic

impedance is Z,, and whose length is 1/4. We thus have a sequence
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that order. A voltage wave is now incident from line 1 onto the joint
between Z,;, and Z,,. Now the effective load at the far end of line 2 is
Zy3. The input impedance to line 2 at any frequency is now

Z2, ?\&
Zin(line 2) = 7
03
o

Reflections at the Z,,- Z,, interface will not occur if Z;,, = Z,;. Therefore, we
match the junction (allowing complete transmission through the thr %
sequence) if Z,, is chosen so that

[ ]
This technique is called quarter-wave matching. Q‘&
[ ]
o\h.’

of joined lines whose impedances progress as Zy;, Zy,, and Z,s, in (\
N

3) Short Circuit termination:
Z =0
, ., (0)cos(a)+ iZ AiA)
" " Z,cos(A )ﬂ@sir(ﬂl)
Z,, = iz, tan(4)

SC

\ .
4) Open circuit termination: %Q)

E‘bﬂ Z —

. cos(,8|)+jZO Szm(ﬂl)
N 2 lim Z L

Q& i " Z00slA) i in( )

° '} ZL
(\}b"\ Z, =—-jz,cot(A)
ocC
T4
Note a Z, may be found from measurements of short and open circuit

termiRstiors

Z0 = £, Z;,
@& ocC SC
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Example:

Calculate the load reflection coefhicient, the standing wave ratio, the wavelength
on the line, the phase constant, the attenuation constant, the electrical length of
the line, the mput impedance offered to the source, the voltage at the input to
the line, the time domain input voltage, the time domain load voltage, the tin
domain mput current, the time domain load current, the average pc
delivered to the mput of the line, the average power delivered to the 1

the line.

If a 300Q load is connected in parallel with the first load then te: the
reflection coetticient, the standing wave ratio, the mput impedance bttered to
the source, the phasor input current, the average power sygPRN 1O the line by
the source, the average power received by each load, the pr voltage across
each load, where 1s the voltage maximums and minim%qnd what are those
values, the phasor load voltage. \

A
?\&@

v

The line is matched;
The reflection coefficient is zero; I, = 0
The standing wave ratio is unity; s = 1
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v
1=%=25(m) (\
V 4
21
B=—=08m (7” ad/m> \QQ'
a=20 E'
Bl =1.6mrrad = 288° orl = 0.84 é
Z;, = 300(Q) offered to the voltage source ‘bc:o
Vin = 350 + 300 20 = 30V) :
The source is matched to the line and deliver haximum
available power to the line. .

. |
A transmission line that is matched at bogh roduces no
reflections and thus delivers maximu OoWEr to the load.
y 4

No reflection and no attenuation;

V,, =V, (-1 ’) N @ew' =30

=30/ — 1 6r
VL = m‘gﬁ 302 — 1.6 rad
‘%‘— 30 cos(2w108t) V
0 cos(277108 1.6m)V
Qlln = = 0.1 cos(2m108t) A

I, = 0 1 cos(2n108t — 1.6m) A
The average r dellvered to the input of the line by the source must all be
delivereqﬁi) load by the line,

1
Q’ Py =P, = Re{VinIi*n}
|
g P,.= P = E}{”ﬂ] «x0.1=15W
2)aL 3000

across the line in parallel with the first receiver. The load impedance is
50Q.

;‘bc:o The reflection coefficient is

Y
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. 150—-300 1 (\
~150+300 0 3 Qv,
The standing wave ratio on the line is

N
5=|_'1t'.=2 v
| Q}

The input impedance is A
7 _7 Zycospl + jZysinpl 300 150 cos 288° 4+ 7300 sin 288°
= 0 cosBl + jZrsinBl 300cos288° + j150sin 288°
= 510£{—23.8° = 466 — j206 Q
which is a capacitive impedance. E‘ .’\/
The input current phasor is A Q\,\
60
= 0.0756,15.0° A

5

"= 300 + 466 — ;206
The power supplied to the line by the s@é

1
Pinﬁﬁl inlzRin
1 ; .
P, = 3 % (0.0756) = 466 = 1.333 W
Since there are no losses in e line, 1.333 W must also be delivered to the load.

This power must duaIIy between two receivers, and thus each receiver
.607W.

receiver agy found as
y V. (z)=V, e #* +Vv,e”*

?\&Q' V,(2)=Vy (€777 +T.e¥?)

V, =V.(=1)=V; (e +T,e "' )=385,/-8.8°

n S

now receives oy d
. "
Because W impedance of each receiver is 300Q, the voltage across the

@& v, Vin =30/72°

T e e
(bc:o TLhen

N V, =V,(0)=V, (e7° +T,e°)= 20, - 288°
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0667 < L1Verl

7 7300 O
Vo] =20V Z

I'he voltage maxima is located at: Q
.:.rn'lx .—-m.l l'?j " ] . L]
2,3{ ) . E

with 8 = 0.8mrand ¢ = m, (D\.
= —0.625 and —1.875m

Z ==
«IMax 3

»
The minima are 1/4 distant from the maxima; (\ )
Zmin =0 and —1.25m
N\
The load voltage (at z = 0) is a voltage Wum.

a voltage minimum occurs at the | &L < Z,, and a voltage maximum occurs if
Z, > Z,, wheé mpedances are pure resistances.

The magnitude alone can be found from the power as (\
N
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In order to provide a slightly more complicated example, let us now place a purely
capacitive impedance of — 7300 £2 in parallel with the two 300 £2 receivers. We are

i find the input impedance and the power delivered to each recaiver. @'

Solution. The load impadance is now 150 22 in parallel with — 7300 82, or

1506 — 7300y — 300 i y
= = = 1M — jeb Q

150 _ 300 1— 2 i
We first calculate the reflection coefficient and the VSWE:
120 — j60 — 300 B — 180 — j&i
120 — j6i + 300 420 — j6d
| 4+ 0.447

= —— 162
T

Thus. the VSWR is hizgher and the mismatch is therefore worse. Let us next calculate
the input impedance. The electrical length of the line is still 288~, 5o that

(120 — j60)cos 28%° + j300 sin 288°

-

= 0447415347

I-

7. — 300 =755 — jI385 0
i 300 cos 288 + j(120 — j60)sin 288 4
This leads to a source current of
v 60
Th = 0.0564/TAT A

f - — —
S e + Zm 30D+ 755 — j1385

Therefore, the average power deliverad to the input of the line is B, =
%{D.Uiﬁa‘l‘ﬁ{?iﬁ] = |.200 W, Since the line is lossless, it follows that P = 1.200 W,
and each receiver gets only .G W,

AN

As a final example. let us terminate our line with a purely capacitive impedance., #; =
— j300 2. We seek the reflection coefficient. the VEWER, and the power delivered to
the load.

Solution. Obviously, we cannot deliver any average power to the load since it is a
pure reactance. As a consequence, the reflection coefficient is

_j300—300
il = 1 -
—js00 1500 )

and the reflected wave is equal in amplitude to the incident wave. Hence, it should
not surprise us to see that the VSWR is

N I =gn
?ﬁ S= oo
& and the input impedance is a pure reactance,

— f30cos 288° 4 j300sin 288

J589

Thus, no average power can be delivered to the input impedance by the source, and
therafore no average power can be delivered to the load.
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SMITH CHART (\
e The Smith chart is a graphical tool for high frequency circuit y
applications. Qv

e The domain of definition of the reflection coefficient for a loss- \Q
less line is a circle of unitary radius in the complex plane. This ?V
is also the domain of the Smith chart.

<
t Im(T") é‘g}‘)@
Re(T') Q’&

.’
¢

@

The goal of the Smith chart is to ¥/deMity all possible impedances
on the domain of existence of t eflection coefficient. To do
so, we start from the generaﬁi ition of line impedance (which
is equally applicable to a lgaddmpedance when d=0)

_V(d)_ 1+F(d)
071 @) Ty

Y

°
In order;oﬁ}qin universal curves, we introduce the concept of

normali% pedance
V@) 2D _1T@)
?:%Q " Zy, 1-T'(d)
he normalized impedance is represented on the Smith chart by
o

using families of curves that identify the normalized resistance r
(bc:o (real part) and the normalized reactance x (imaginary part)
Y
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:”(d):Re(:H)Jrjhn(:H]:r+j.1* Q.i\

Let’s represent the reflection coefficient in terms of its \Q
coordinates

rd) = Re(I) + jIm(I) ,&
After some lengthy mathematicl manipulations (follow you@g
book), it may by shown that the result for the real part
that on the complex plane with coordinates (Re(I'), Im(I))all the
possible impedances with a given normalized resmﬁn,ce r are
found on a circle with

Center =1 - .0 Radius =-
1+ 7 1+ 7
V44
As the normalized resistance r va m 0to e , we obtain a
family of circles completely cont inside the domain of the

reflection coefficient |I'| < 1,

v ImiI" )

i r=1 =5
r=0 |—— a
| / Reh{l" )
| \ \
r=0.5 - ' —>o0
¢ L

\ 4

L 4
Q’the result for the imaginary part indicates that on the

Yvomplex plane with coordinates (Re(I"),Im(I")) all the possible

<
&
gbf?

impedances with a given normalized reactance x are found on a
circle with
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Center=< 1, —

|

Radius = —

z

As the normalized reactance x varies from —c° to < , we obtain

a family of arcs contained inside the domain of the reflecta‘)@

coefficient |I'| < 1.

LIH]{T]

QY

Basic Smith Chart te '%es for loss-less transmission lines

e GivenZ(d) = Fi (d)

AD

x=1
X —taoo
Re(T" )
x=-1

Given I'(d -—.Rgnd Z(d)
e Given I} Find I'(d) and Z(d) @ a specified d.

e Find

Ywen Z(d) = Find Y(d)

@’Given Y(d) = Find Z(d)

<
&
&

Y

Dr. Naser Abu-Zaid

Given;l“.(d) r Z(d) = Find I, and Z;

and dmin (maximum and minimum locations

0 \yvoltage standing wave pattern)
e { Riny¥the Voltage Standing Wave Ratio s (VSWR)
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Given Z(d) = Find I'(d)
1. Normalize the impedance

Z(d) R X ] O
z,(d) = +j—=r+jx Yv
Zo Zo 2o <
Find the circle of constant normalized resistance r C‘OQ
Find the arc of constant normalized reactance x E%‘bﬂ
The intersection of the two curves indicates the tion
coefficient in the complex plane. The chart providessdirectly the
magnitude and the phase angle of I'(d) K

Example: Find I'(d), given 3 Q

Z(d) = 25 + j 100 2 with £, R

howh

1. Normalization 3. Find normalized
. reactance arc
Z, (d) = (25 + j 100)/50 -
x=2.0
=05+j2.0
7
2. Find normalized |

resistance circle *
*3 50.906 °

r=0.5 \

4. This vector represents
the reflection coefficient

T (d) = 0.52 + j0.64
IT (d)] = 0.8246
2T (d) = 0.8885 rad

N
= 50.906 °
A
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Given I'(d) = Find Z(d) (\
1. Determine the complex point representing the given reflection p
coefficient I'(d) on the chart. Qv

2. Read the values of the normalized resistance r and of the \Q
normalized reactance x that corresponds to the reflection ?V

coefficient point.
O

3. The normalized impedance is z, (d) = r + j x and the ac%

impedance is {b‘
Z(d) = Zox 2o (d) = Zo x(r + jx) = Zox 1 + ]

Given I} and/or Z; &= Find I'(d) %ﬂ@%
. !

NOTE: the magnitude of the reflection coeﬁ
along a loss-less transmission line tergnyn
load, since

IF(@)| =1, exp(Rj2RW| = |1

t Is constant
by a specified

Therefore, on the complex plane, a@'ﬁe with center at the origin and
radius | I | represents all possilgr flection coefficients found along
@ ircle of constant magnitude of the

the transmission line. When
reflection coefficient is n the Smith chart, one can determine
the values of the line i ce at any location.

The graphical stg -%step procedure is:
1. ldentify t reflection coefficient I; and the normalized load
impedance Z; on the Smith chart.
2. Draw *\circle of constant reflection coefficient amplitude
= |I.].
ng from the point representing the load, travel on the circle
he clockwise direction (wavelengths toward generator), by

3¢
Q:Ian angle
0
X~ e:zga:z%?a

%Q) 4. The new location on the chart corresponds to location d on the
&b. transmission line. Here, the values of I'(d) and Z(d) can be
read from the chart as before.

Y
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Example: Given
Z, =25+ j1002 with Z, = 500 ’
find Q'

O
Z(d) and TI'(d) for d = 0.181 ,&?’
N

Circle with constant | I |

6=2pd
=2(2n/A) 0.18 A
=2.262 rad
=129.6°

I(d)=0.8246 ~-78.7° | L (d)
= 0.161 —j 0.809

i
=12

z,(d)=0.236-1.192
Z(d) =z(d) x Zo=11.79 — 59.6 Q
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Given I; and/or Z; = Find dmax and dmin (\

1. Identify on the Smith chart the load reflection coefficient I; or P

the normalized load impedance Z; . Q.
2. Draw the circle of constant reflection coefficient amplitude \Q

|['(d)| = |I;|. The circle intersects the real axis of the reflection ?V

coefficient at two points which identify dmax (when I'(d) =&

Real positive) and dmin (when I'(d) = Real negative)
3. A commercial Smith chart provides an outer graduatio Wg@

the distances normalized to the wavelength can‘% ad

directly. The angles, between the vector I, and the regl axis,

also provide a way to compute dmax and dmin {6.
Example: Find dmax and dmin for inductive@ apacitive
[ ]

loads . R
Z, =254+ 1000 ; \

And Z, = 25 — 108§ Qv
Where (Z0 = 50 (2,)

N
O

Zp=25+j100Q (Z,=50Q)

2B dpax = 50.9°

Im(Zg) =0
(Zr) dyoc = 0.07071

2B dypin = 230.9°
iy = 0.32070

Dr. Naser Abu-Zaid Page 39 9/19/2012




Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8"

edition 2012;

Zp=25-j100Q (Z,=50Q)

Im(Zg) <0 2B dppax = 309.1°

2P dpin = 129.1°
Apin = 0.1793 A

>

Given I} an ,Q,=> Find the Voltage Standing Wave
Ratio s (VSWR)

The Volta ding Wave Ratio or VSWR is defined as

‘\? s 0L

‘VS(Z)‘mln _‘FL‘
ormallzed iImpedance at a maximum location of the standing
ve pattern is given by
?‘/ 1+ (dpa) 1411
= = = I
& Zn(dmax) 1- r(dmax) 1- |rL| VSWRH
Q) This quantity is always real and > 1. The VSWR is simply obtained

&8:0 on the Smith chart, by reading the value of the (real) normalized
Impedance, at the location dmax where I' is real and positive.
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The graphical step-by-step procedure is: i\
1. Identify the load reflection coefficient I;, and the normalized load Q,
impedance Z, on the Smith chart.

2. Draw the circle of constant reflection coefficient amplitude ?y

Ir(d)| = 5,l. <
3. Find the intersection of this circle with the real positive axis (@
the reflection coefficient (corresponding to the transmissiopylt
location dmax). Eb‘
4. A circle of constant normalized resistance will also intersect this

point. Read or interpolate the value of t nQrmalized
resistance to determine the VSWR.
[ ]

Example: Find the VSWR for two different loads b’.’
Zp; = 25 + 100 (‘b,\
And Z,, = 25 — j1
Where (Z, = 50§

Circle with constant | T /\
Fi

A

Circle of constant
conductance r=10.4

Z((lmas )21':]4

=

For both loads
VSWR =104
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Given Z(d) <= Find Y(d) (\
N

Review the impedance-admittance terminology:

Impedance = Resistance + j Reactance \ \Q

Z =R + jX
Admittance = Conductance + j Susceptance &

Y G + jB
Note: The normalized impedance and admittance are defined as CO

1+1°(d 1-T'(d
Zy(d) = ( ) Vuld) = ( )
1-T'(d) 1+T(d)

Keep in mind that the equality Q,-;

_”(m ]_1,,(5,?)0‘

is only valid for normalized mpeda@d admittance. The actual
values are given by

Z("”%) '”(‘” 4)

v (d)

Y(d)=1Yy-y,(d)= Z

V4

is_the characteristic admittance of the transmission line.
2 .

The graplza step-by-step procedure is:

the load reflection coefficient I; and the normalized load

where Y, =

Q.Draw the circle of constant reflectlon coefficient amplitude
QO Ir@) =1

Yﬁ 3. The normalized admittance is located at a point on the circle of

& constant |I'| which is diametrically opposite to the normalized
Q) impedance.
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Example: Given
Z, =25+ 1002 withZ, = 50 findY, . ’

g—
Circle with constant | T _\ Za(d) = 0.5 + ] 2.0

Z(d)=25+j100[Q]

_/ 6 =180°

= 28-0/4

/:\-

va(d) = 0.11765 — j 0.4706

Y(d) = 0.002353 —j 0.009412 [ S ]
Zu(d+1/4) = 0.11765 — j 0.4706
Z(d+1/4) = 5.8824 — j23.5294 [Q ]
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