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UNIFORM PLANE WAVES (PROPAGATION IN FREE SPACE) 
 
Starting with point form of Maxwell's equations for time varying fields in free 
space: 
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Collecting results 
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Good reminder of telegraphist equations! 

To obtain the wave equations, differentiate the first w.r.t z and the second w.r.t t 
and rearranging to get: 
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Or reversing differentiations to get: 
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And a general solution is given by: 
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From which the velocity of wave propagation may be deduced (by substituting 1f  

in the wave equation, performing the indicated diff’s) 
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TEM waves: Transverse ElectroMagnetic waves implies E  is perpendicular to H  
and both lying in a transverse plane (a plane normal to the direction of 
propagation)  

Uniform Plane Waves UPW: E  and H  fields have constant magnitude and 
phase in the transverse plane. (Constant phase and amplitude). 
For sinusoidal waves: 
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The wave number in free space is defined as: 
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The wavenumber is a property of a wave, its spatial frequency, that is proportional to 

the reciprocal of the wavelength. It is also the magnitude of the wave vector (to be seen 

later). The wavenumber has dimensions of reciprocal length, so its SI unit is m
-1

.  

Simply the number of wavelengths per 2π units of distance. 

 
Also the wave length is given by: 

http://en.wikipedia.org/wiki/Wave
http://en.wikipedia.org/wiki/Spatial_frequency
http://en.wikipedia.org/wiki/Reciprocal_(mathematics)
http://en.wikipedia.org/wiki/Wavelength
http://en.wikipedia.org/wiki/Dimensional_analysis
http://en.wikipedia.org/wiki/Reciprocal_length
http://en.wikipedia.org/wiki/SI_unit
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Maxwell's equations and the wave equations may be written in frequency 
domain with the help of the transformation; 
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3D WAVE EQUATIONS (FREE SPACE) 
Taking the curl of the first equation, namely 

sos j HE    

Using the identity 
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Substituting 

  sosss j HEEE  2
 

Using the rest of Maxwell’s equations 
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Similar approach may be followed to obtain the wave equation for the magnetic 
field 



Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8
th

 

edition 2012;  

 

Dr. Naser Abu-Zaid Page 4 7/22/2012 

  
)for eqation (Wave equation Helmholtz Vector H 
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RELATION BETWEEN   AND   

For the previous assumption   xx zE aE ˆ , the wave equation reduces to: 
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With the frequency domain solution given by: 
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But from Maxwell's equation 
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Differentiating and solving for  zH ys   
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And the intrinsic impedance of free space is 
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It can be shown that: 
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HEn aaa ˆˆˆ 
 Where 

nâ : unit vector in the direction of propagation. 

Eâ : unit vector in the direction of  . 

Hâ : unit vector in the direction of  . 
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PROPAGATION IN DIELECTRICS 
Assuming a simple dielectric, the wave equation is written as: 

)for  eqation (Wave22 EEE ss k  

Where k  is the wave number. 
 

Ex. 12.1: Let    
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07.0ˆ203ˆ402  aaH  for a uniform plane 

wave traveling in free space. Find: 

1)   

2)  nstPH x 31,3,2,1@   

3) origin  the@  0@ tH  
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Allowing the permittivity to be a complex constant (to be explained later), implies 
that the wave number may be complex and it is called the complex propagation 
constant. 
 

The propagation constant of an electromagnetic wave is a measure of the change 

undergone by the amplitude of the wave as it propagates in a given direction. The 

propagation constant itself measures change per metre but is otherwise dimensionless. 

The quantity measured, such as voltage or electric field intensity, is expressed as a 

sinusoidal phasor. The phase of the sinusoid varies with distance which results in the 

propagation constant being a complex number, the imaginary part being caused by the 
phase change. 

 

For a One dimensional problem   xxs zE aE ˆ , the wave equation reduces to 
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Transferring to time domain, and considering only the forward part: 

   zteEtzE z
xox    cos,  

 
Define the complex permittivity (dipole oscillations and conduction electrons and 
holes) as: 

 ''''''''' rrororo jjj    

http://en.wikipedia.org/wiki/Electromagnetic_wave
http://en.wikipedia.org/wiki/Wave_propagation
http://en.wikipedia.org/wiki/Phasor
http://en.wikipedia.org/wiki/Complex_number
http://en.wikipedia.org/wiki/Imaginary_number
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Clearly from the time domain expression of  tzE x , , the phase velocity is given 

by: 
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And the wave length is (distance required to change the phase by 2 ): 
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And the magnetic field associated with the forward propagating part is: (can be 
found through the use of Maxwell’s equations) 

 

With the intrinsic impedance being a complex quantity, given by: 
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Since 

   zteEtzE z
xox    cos,  
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Then xE  leads yH   by   . And you may do the same for the backward wave. 

 
Lossless medium (Perfect dielectric)  
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(Lossy Dielectrics) 
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But on the other hand, 
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Comparing the two equations 
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Also from the second equation 
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cJ  and dJ  are 
o90 out of time phase, and we identify the material as having 

large losses or small losses depending on the magnitude of the loss tangent 
defined by: 
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The above two exact expressions may be approximated using the binomial 
expansion 
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Why Complex Permittivity?  
Loss mechanism occurs in dielectrics even in the absence of free electrons 

 0 , this is due to rotation of the dipoles to align with applied time varying 

field or due to the net shift of the electron cloud with respect to the positive 

nucleus. At high frequencies the polarization  P  of the material is out of time 

phase with applied field. This loss mechanism is modeled by a complex 
permittivity, as shown previously, even with zero conductivity 
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So, again from Amper's law 
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And the loss tangent shown earlier is: 
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Even if the conductivity is nonzero  0  but quite small, still we may write 

Amper's law as: 
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And the loss tangent is defined as: 
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Depth of penetration (Skin Depth) 
Consider a forward traveling wave in a lossy dielectric; 
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The quantity  
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is called the skin depth, or depth of penetration. 
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Illustration of skin depth 
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POYNTING’S THEOREM (POWER THEOREM) 
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Left dot both sides with E . then using the identity 
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And with some vector manipulations, one can obtain (Follow text book) 
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Illustration of power balance for EM fields

 And the instantaneous Poynting vector S  (or instantaneous power density) is 
defined as: 
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2) Lossy Dielectric: 
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The average power density (time averaged Poynting’s vector) is (for time 
harmonic case): 
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The above expression is easily evaluated using phasors by defining 
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Doing it for lossy dielectric (Sinusoidal wave) 
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Try to fill the rest. 
 

Good conductors Approximations 
(Skin effect) 
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The above two exact expressions may be approximated using the binomial 
expansion 
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S  

@z=0 

S  

@z=10m 

                  1                           4.15                0.12                27.17                25.82 

                100                  3.45                0.035                                                                   

               3000                  3.2                0.0009                23.8  

 
 

Example 12.5: At frequencies of 1, 100, and 3000MHz, the dielectric constant 

of ice made from pure water has values 0f 4.15, 3.45, and 3.2, respectively, 

while the loss tangent is 0.12, 0.035, and 0.0009, also respectively. If a UPW 

with amplitude of 100(V/m) @ z=0 is propagating through the ice, fine the time 

average power density @ z=0 and z=10m  for each frequency. 
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Consider a forward traveling wave; 
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Which is the skin depth again, or depth of penetration. 

For copper  
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f
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After a few skin depths within the conductor, all fields are almost zero. 
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Attacking the power problem (in good conductors); 
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The total average power (loss) crossing the conductor surface at 0z ; 
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What result would be obtained for the power loss, if it is assumed that the total 
current is distributed uniformly in one skin depth. 

To calculate the total current crossing the surface at 0x , rewrite in phasor 
form: 
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Assuming this current is distributed uniformly with current density 
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J uniform   

through the cross section bS    then 
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Then the total instantaneous power dissipated in volume of one skin depth 
thickness is: 
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And the time average power loss within this volume is; 
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dtPP xo
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LL ins 4
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This is exactly the same formula obtained before. 
Conclusion: The average power loss in a conductor with skin effect may be 
calculated assuming that the total current is distributed uniformly in one skin 
depth. Or, the resistance of width b and length L of an infinitely thick slab with 
skin effect is the same as the resistance of a rectangular slab of width b, length 

L, and thickness   without skin effect. 
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For a circular cross-section wire with radius a , and at high frequencies 
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More often, the surface or skin resistance        
 
     is defined as the 

real part of the intrinsic impedance for a good conductor. Thus 
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WAVE POLARIZATION 

Polarization is defined as The locus that the tip of the E  field traces 

as time varies for a fixed point in space. Or, the time-varying behavior 
of E  at a given point in space. 

 

 

Consider a wave propagating in the negative z-direction 

     tztztz yyxx ,ˆ,ˆ, EΕ aa E  

Assume each component have a sinusoidal time dependence, and Since 

      tjet Recos , then each component maybe written as a real 

part of some complex quantity (complex phasor); 
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So, the time domain representation is obtained as;  
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      xx
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xx kztEeEtz x 


 cosRe,E  

      yy
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cosRe,E  

Three cases are to be considered. 
Case1: Linear polarization 

,...2,1,0 nnxy  with    

Example: Find the polarization (linear, circular, elliptical) and sense of rotation for the 
uniform plane wave whose electric field is given by 
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Linearly polarized with an angle of   o56.265.0tan 1  . 

Note that  y , 0x  and   0xy . So, from the beginning we may state 

that the polarization is linear, but with what angle? 
 

Case2: Circular polarization 
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If the direction of propagation is in the positive z-direction, then the phases for 
CW and CCW must be reversed. 
Example: Find the polarization (linear, circular, elliptical) and sense of rotation for the 
uniform plane wave whose electric field is given by 
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Since the wave is propagating in negative z-direction, this is a RHCP circular polarization or 
CW polarization. 
 
Note that:  
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 So, from the beginning we may state that the polarization is CW circular. 
 

Case3: Elliptical polarization 
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The curve traced is a tilted ellipse. 
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And the tilt angle w.r.t the y-axis is 
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Example: Find the polarization (linear, circular, elliptical), sense of rotation, axial ratio AR, 
and the tilt angle for the uniform plane wave whose electric field is given by 
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Solution: 
Take  0z  
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This is an elliptical polarization with 
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Since the wave is propagating in negative z-direction, this is a RH elliptical polarization or 
CW elliptical polarization. 
 
Note that:  

yx EE  , 
2
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 So, from the beginning we may state that the polarization is CW elliptical. 
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THE ELECTROMAGNETIC SPECTRUM 

 
 

 

where:c = 299,792,458 m/s is the speed of light in vacuum and 

 h = 6.62606896(33)×10−34 J s = 4.13566733(10)×10−15 eV s is Planck's 
constant.[5] 

©From Wikipedia, the free encyclopedia 
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