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Course syllabus

Electromagnetic 2

ELECTRICAL ENGINEERING

(63374)

Semester 5" & 6"

Language English

Compulsory / Compulsory course for electrical engineering and communication
Elective engineering students.

Prerequisites

Electromagnetic theory (1) and preferred after a course on
equations.

g\/ﬁfp‘r’entlal

Course
Contents

Magnetic Forces; Magnetic Circuits; Inductance; é@\a'day’s Law;
Displacement Current and time varying Maxwell's equations;
Transmission lines; Plane electromagnetic w ; Reflection and

transmission of plane EM waves; Introduction toWaveguides.
QY

Course
Objectives

To understand Faraday’s Law and its applisations; To analyze guided
propagation through Transmission s, and solve associated
problems; To predict the existence.8f EM waves for time varying
Maxwell’'s equations; To understand EM wave propagation in
unbounded media and study %qé characteristics and parameters of
plane EM waves and solutic%éb f wave equations; To study the effect
of dispersion in communication channels; To study basic applications
of EM theory including T@é and waveguides; To be prepared for more
advanced courses. appreciate and feel the importance of
electromagnetic theﬁr*y in our dalily life.

Learning
Outcomes and
Competences

1. Be able ~to apply knowledge of complex A 50%
calculu§ vector algebra and vector calculus

to Eg@zfleld problems (DC and time varying

{7
a

2.\)Be able to analyze and design components C&K 10%

" and/or programs in relation to field

N
> problems.

3. Attain the ability to solve basic E 40%
electromagnetic wave propagation,

reflection and refraction problems.

Textbook and
References

1. “Engineering Electromagnetics”, William H. Hayt and John A.
Buck; 7" Edition; McGraw-Hill International Editions, 2006.

2. “Field and Wave Electromagnetics”, David K. Cheng; Addison-
Wesley Publishing Company; Second Edition 1989.

3. http://en.wikipedia.org/wiki/Electromagnetic field

Assessment
Criteria

If any,mark Percent
as (X) (%)
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Midterm Exams X 40
Quizzes X 10
Homework’s
Projects
Term Paper
Laboratory Work
Other
Final Exam X 50 2D
Instructor(s) Assist. Prof. Dr. Naser A. Abu-Zaid; /\/‘y
naser_res@yahoo.com =
Week Subject >
1-2 Magnetic Forces: Lorentz Force equation; Magpetic Forces and
Torques; Magnetic materials and permeability% agnetic Boundary
conditions; Magnetic Circuits; Magneto-static £energy; Inductance and
Mutual inductance; Summary of Maxwell's»equations for static and
steady fields. /\/‘Z}b
3-4 Time-Varying Fields and Maxwel’SSEquations: Magnetic forces and
torques; Magnetic materials and magnetic circuits;
3-4 Faraday’s Law and applicationszDisplacement current; Point form and
Integral forms of Maxwell’s et&lations; Electromagnetic Boundary
Conditions; N
5 Transmission Lines:.@eneral Transmission Line Equations; TL
Parameters; Lossle&\gq:)ropagation; Lossless propagation of sinusoidal
voltages; Complexyanalysis of sinusoidal waves; Solution of
Transmission line equations in phasor form; lossless and low loss
propagation;Power transmission and losses;
First Ex@‘o
6 Wavw(eﬂections; VSWR; Finite length TL; TL’'s as circuit elements;
Sn&tb Chart; Transient Analysis(possible);
A
7 L Uniform Plane Electromagnetic Waves: Wave equations and their
' solutions; Propagation in free space; Propagation in dielectrics;
< propagation constant; intrinsic impedance; phase velocity, phase
) m%o constant; attenuation constant, wave length;
8% Flow of electromagnetic power and Poynting's Vector (Poynting’s
Q&' Thm.); Propagation in good conductors; Skin effect; Polarization of
waves;
9-10 Reflection and Dispersion: Normal Incidence at a Plane Dielectric
Boundary; Normal Incidence at Plane Conducting Boundary;
11-12 SWR; Reflection from multiple interfaces; Propagation in arbitrary
directions;
Second Exam
13 Oblique Incidence at a Plane Dielectric Boundary (Perpendicular

Dr. Naser Abu-Zaid

Page 3 9/4/2012



mailto:naser_res@yahoo.com

Dr. Naser Abu-Zaid; Lecture notes in electromagnetic theory 1; Referenced to Engineering electromagnetics by Hayt, 8"
edition 2012;

Polarization and Parallel Polarization); Oblique Incidence at Plane
Conducting Boundary;
14 Total Reflection and Total Transmission; Dispersion and Pulse
expansion; Introduction to metallic waveguides.
15 General Review
O
4
\/
\O\a
R
X2
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Magnetic Forces, Materials and Inductance

Lorentz force equation
The electric force on a particle whether its moving or stationary is
F, =QE
Positive charge implies force and field are in same direction, while negative charge
implies opposite directions.

The magnetic force on a moving particle in a magnetic flux density B with velocn;%;@’/
is:

=QvxB ?:OO
The total force is the superposition of both %@&
F=F +F, =Q[E+VvxB] X
Lorentz forceequation Ng)*'

Example 9.1: A point charge Q =18(nC), is moving with a velocity of 5x10° (m/s) ina
direction specified by év = 0-63X +0-75éy +0-3éz. Find the magnitude of the vector
force exerted on the moving particle by the field:

1) B=-34,+4a, +64,(mT).
2) E=-34,+4a, +64a,(KV/m).
3) Bothe fields acting together.

\J

?.'
m = Qv x B = (18 x 30°)(5 x 10°)(0.68, + 0.75@, + 0.38,)
X (— 3a%|—4a +6d,) 1073 =?
Fe = 0 5@ x 10)(-3a, - 43, +68,) 107 =7

4?6 F=Fp+F,
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Force on a differential current element
Consider a small section of current:

P / . External Field

l »

\
| o—
_— q q. .\/ ‘b\b

Total charge dQ :A@}ﬂv

Differential VOll{IﬁE dv

contains a lar%eehumber
of Chargéﬁ particles

-

&
|dl =Jdv =Kds >

The force on each charged particle due to motion in a ma%qetlc field is:
dF =dQvxB

B &

ut ‘Z;O
dQ=p,dv <
=dF, = p\édy\'/ <B

‘D‘\
30, v
S

dF, =JxBdv =K xBds =1dl xB
The total force on a conductorearrying current is:

Fo = [[] 3xBdv = [[KxBds = {1dI xB =-1{Bxdl

And since

Hence

For uniform B Of\/‘o'
0 F, =1dlxB
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Example 9.2: In the figure shown. Find the net force on the closed loop due to the
field produced by the straight filament.

z
15!AZ
>y
O
(120) (130) "
2(mA) &
(310) (330) 57
<

g o dra o 2 x 1073 <-

M= omR YT T2 5y

30 x 1077 _ D

Bry = poHpy = #az f\/

Floop = _Iloopfﬁ Bfll X ‘gv

jl +] (?;)xdyﬁy}
)

= (=2 x1073)(3 x 1079)
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Force between differential current elements

LdL,
'.4'. ( '.4'. |'1_| )
Free space R Point 2 /\/(b\e}
“00
?n,

-—

LdL,

Point 1

The magnetic field at point 2 due to aéla&’rent element at point 1 was
found to be

1J dLJ X A2
AR,
The differential force on a différential current element is

%@*dF:!deB

letting B be dB, (thé%lifferential flux density at point 2 caused by
current element 14);)\by identifying I dL as I,dL,, and by symbolizing
the differential - @mount of our differential force on element 2 as

dH, =

ddr2): 4%
Y:OQ d(dF>) = ILdL; x dB»
Q,%é dB, = pedH;
% I 1>
Q*' d(dF;) = g Y dLy x (dL; x ag»)

12

The total force between two filamentary circuits is obtained by
integrating twice:
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I I B dL, % a
Fy — o2 szxj;$]

4m 12
Lil, ([ [ agip xdL,
= o2 e > T L,
Hox ?Q RZ, } e

EXAMPLE 8.2

As an example that illustrates the use (and misuse) of these results, consider the

two differential current elements shown in Figure 8.3, We seek the differential force
on dLa.

Solution. We have I)dL) = —3a,A-mat Py(5,2. 1), and I;dL; = —4a_A - m at
Py(1. 8, 5). Thus, Rj; = —4a, +6a, +4a_, and we may substitute these data into (13),

4107 (—4a;) = [(—3a,) x (—4a, + 6a, + 4a_)]

didF) = — = 1613611600
= 8.56a, nN
>
O
Yy
Q}
<
&n
<
.\bm
/\/‘b
“00
?h,
@’Q
<
&c
60
47
0/
O
Yy
Q}
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The Magnetic Dipole

P

nd
)

Small loop of current I with radius a; First flv?a A then B. Using
Binomial expansion with the assumption r >»qr, one can obtain;
Uol(ma?) sind

4rrley”
e pol(ma®) cos® < u,I(mwa?)sinf
~ O 2m3 %o A3

,;\&

Bohr atom Current loop Magnetic dipole
model moment

Aza(p

B

Define the maghetic dipole moment as;
&Y m=a,lna® = a,IS = a,m (RHR)
Let the Qe?iter of the loop be located at r’, then, the previously written
exprggs%ns maybe written as;
< - Hom X a\R
Q " 4mR?
Hom .
(a,-2cosf +agysinf)

_ 43
Compare with electric dipole

~
~

p.ag
V~——o
4me,R?

P ;(a,2cosb0 +agsinb)

E~——:
4tu,r
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Forces and Torques on closed circuits
The torque T isdefinedas: T=RxF

AZ % T i1s L to plane containing R and
F.
% The origin about which Torque 1s
to be calculated must be defined.
< The point at which force 1s z}%ﬂied
must also be defined. /\/q,\
v

)
R F I
/ %eﬁ
. <

X < -
2
Consider a differential current loop in an applied B : /\/@\
Ya N
N
B .V
Qo
A d » X
R
‘;}_\.—L v
Al
:?t&‘? >
4T=1 dS =B
%‘b Differential
. vector area
< -
Defining the differential m,@netic dipole moment as;
s ’ dm =1dS
Then Of\/
Y:’O dT =dmxB
So, the torqugjbn a planar loop of any size or shape in a uniform B is:
> T=I1SxB=mxB

The ag.pﬁed B would produce a torque which tends to turn the loop so as to align the
magnetic field produced by the loop with the applied magnetic field.
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EXAMPLE 8.3

To illustrate some force and torque calculations, consider the rectangular loop shown
in Figure 8.7. Calculate the torque by using T = IS = B.

Solution. The loop has dimensions of | m by 2 m and lies in the uniform field
By = —0.6a, + 0.8a.T. The loop current is 4 mA, a value that is sufficiently small to
avold causing any magnetic field that might affect By,

We have

T=4x 107l )(2)a_] = (—0.6a, + 0.8a.) = 4.8a, mN - m

Thus, the loop tends to rotate about an axis parallel to the positive x axis. The small -\bf
magnetic field produced by the 4 mA loop current tends to line up with By. /\/(b‘
7/
*00
z fad
B=-0.64, +0.84,(T) &
. y . 5

O >y
/ 4(mA)'\/q>\b
<

S
A

EXAMPLE 8.4

Now let us find the torque once more, this time by calculating the total force and
torque contribution for each side.

Solution. On side | we have
F; =1L, x By =4 x 10%(1a,) x (—0.6a, + 0.8a.)
= —3.2a, — 2.4a; mN
On side 3 we obtain the negative of this result,
F3 =3.2a, +2.4a. mN
Next, we attack side 2:

F:=1L: xBy=4x IO""EQa_‘-} x (—0.6a, + 0.8a;)
= 6.4a, mN

with side 4 again providing the negative of this result,
Fy = —6.4a, mN

Because these forces are distributed uniformly along each of the sides, we treat
each force as if it were applied at the center of the side. The origin for the torque may
be established anywhere since the sum of the forces is zero, and we choose the center
of the loop. Thus,

T=T+T+T:;+T, =R, =F +R; x F; + Ry = F3 + Ry = Fy
=(—lay) = (=3.2a, — 24a;) + (0.5a,) x (6.4a,)
+(lay) = (3.2a, + 2.4a;) 4 (—0.5a,) x (—6.4a,)
=24da, +2.4a, =4.8a, mN-m
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Magnetization and Permeability

In free space
B = ,U,(}H

In material media, the magnetization M defined as the magnetic dipole
moment per unit volume,

1 nhw /\/(0\6
M= lim — -
dim, 5 2™ e
Its units must be the same as for H, amperes per meter. 6&"
B = po(H + M) | %fz?
for <
linear isotropic media where a magnetic susceptibility zmcan be&gned:
— ] >
M= y.H 4°
B = po(H+ xuH)
S
= pop H e
Hr = I + Xm
M= Hofir
. B=puH
c.q”g
Table 8.1 Characteristics of magnetic materials
Classification Magnetic Moments B Values Comments
Diamagnetic Mo + Mgpin = 0 Bine < ll-r"‘..'i]:nr.-l By = Bapp]
Paramagnetic Morbh + Mspin = small  Bine = Bappt  Bimt = Bappl
Ferromagnetic \Mgpin| 3> (Mg Biny > Bypp  Domains
Antiferromagnetic  |Mgpin| =3 (Mg Biny = Bypp Adjacent moments oppose
Ferrimagnetic | Mspin| 2 (Mo Bint = Bappl Unequal adjacent moments
oppose; low o
Superparamagnetic  |Mgpin| 3> (M| Bipy = Bypp Nonmagnetic matrix;

recording tapes
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Given a ferrite material that we shall specify to be operating in a linear mode with
B =005 T, let us assume @, = 50, and calculate values for gq. M and H

Solution. Because iy = | + Fm. we have
In=We—1=43
Also,
B =p poH >

amd
B 0,05
TS0 x 4w x 10T

The magnetization is M = ya M, or 39, 000 Afm. The alternate ways of relating B
and H are, first,

= T96 Afm

B = pH+ M)
ar
0.05 = 47 = 107 (796 + 39, 000)

showing that Amperian currents produce 49 times the magnetic feld intensity that
the free charges do; and s=econd.

B = p g H
ar
0.05 = 50 x 4 = 1077 = 796

where we use a relative permeability of 50 and led this quantity account completely
for the notion of the bound charges. We shall emphasize the latter interpretation in
the chapters that follow.

&
1
0/
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Magnetic Boundary Conditions (DC)

H!I

/ f’,..-ﬂ-""'"
H M :
L ey iy _”'r}
\ a
Area M“"‘ . b’
Ay .
: >
A /‘/\/(b
N v
. o
B, (b‘%

Figure 8.10 A gaussian surface and a closed path are
constructed at the boundary between media 1 and 2, having
permeabilities of wy and wo, respectively. From this we determine the
boundary conditions Byy = Byz and Hyy — Hip = K, the component
of the surface current density directed into the page.

&
B-dS=0 <&
?E; s

Byz = B

i
Hyz = —Hm
12

&

Q
%‘b‘% fﬁ]—] ~dL =1
QY [ Hyi—H.=K
.\bﬂ

&
4 (H; — Hy) x ayps = K
0 1 Nl

g H;y —Hpz =ay;2 xK
S
‘%"b’ Brl Eﬂ

— _ L _K

Q*' 1 2
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EXAMPLE 8.6

Toillusirate these relationships with an example, letus assume that g = gy = 4 pH/m
inregion | wherez = 0, whereas uz = 7 pH/minregion 2 wherever 2 = 0. Moreover,
let K = B0a, A/m on the surfice 7 = 0. We astablish a field, By = 2a, — 3a, 4
a, mT, in region 1 and seek the value of B,.

Solution. The normal component of By is
B = (Ba -aviz)awz = [(2a; — 3ay + ag)-(—az){—a;) = a; mT

Thus, ,
us \b,

By =By =a, mT

'Y

We next determing the tangential components:

B: = B — By1 = 2a; — 3aymT

and
;
Hy _Ba =% — 500a, — 750a, A/m
Thus,
Hy; = Hy —ayz = K = 300a, — 750a, — (—a,) = 80a,
— 500m, — 750a, + 808, — S00a, - 670, A/m
and
Bz = poHe = 7 » 107%(3000; — 670ay) = 3.5a: — 4.60a, mT

Therefore,

B; =By: + By =353, — 460, +a, mT
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Magnetic Circuits and Hysteresis

Magnetic Circuits Analogy with Electric Circuits

Electrostatics Magnetostatics
[Eedi =V fHedl =NI=V,
chosen C
path
jjJ‘dS:| jjB.ds:q)m (b@
s s ‘,
emf=V mmf=V,, ?:OV
! ®, &
Resistance Reluctantg
r-9 od
oS 4 rr& US
V =RI J~0Vm =R,D,
o AY” Y7

Obtaining the prﬁlous analogy
Consider a toroid with N turns, square cross 8@53 sectional area W %, mean radius Po and
a steady coil current | . /\/‘b
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Amperian Ioa;a.g: —= _
Pl s
N i

Toroid with circular
Cross section

fop view
. 0'3
4>
Side view of toroid with ;
square cross section !
|
|
|
| P
1
& ® | s olf
R B, i B, h
© o | e el
|
|
| a
[
|
Y%
;\bq
/\/'U'
o
q}
% .
%fzy Top view
< - of toroid
Q with square
Cross
section
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Ampers law implies:

N
Then: f\/(b

Knowing that: O

So: %

But, its well known that: %@%

And its clear that: /\/q}b
0/

—1
O

m
éY” >
%

<

&.
Q
H—> 0o
And the toroid circuit is replaced by the electric circuit given below:

P8
lofm <

Bl
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=
Yz

Actually KVL for magnetic Circuits may by written as: K
YV = YR,0, T
. m; - ml m] ,&
|
R
Sumof allmmf's  sumof allmmf X
from sourcecoils  drops alongthe cor >

Similarly, KCL for magnetic circuits may be obtained by ,@h&denng the boundary condition
across a core junction:

B,.S, +B,,S, +B,;S; =0

Z(Dmi =0
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Example 4: Air core toroid with 500 turns, circular cross-section of 6cm? , mean
radius of 15CM, and coil current of 4A. Find H.

Un
- NI == ! :
e grd
90'
<
&-
<

xS

Solution: 0«/\/
If Ampers law 1s used: Y:’O
&
4 NI 500x 4 2120

* " 21p, 6.28x0.15
Using electrical circuit analogy, then @%id circuit 1s replaced by the electric
circuit given above: D !
d V' 27x015
R, = = 7 2
BS  47x107 x6x10

%@%@&1.25x10_9 H)

& o Vi 2000

% " R, 1.25x10°
> m
\O\f’ =1.6x107° (Wb)
Y., -6
& B=Ln_ 1'6X1C_)4 =2.67x107°(T)
%‘b’ S 6x10
< B 2.67x10° _ At
© H= U, ~ 4rx107 _2120( Aq)
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Example 5: Determine the magnetic flux through the airgap. g, =1000,
S=10"m? everywhere, l; =0.1m, 1, =0.1mm, I, =0.3m, and 1, =0.2m, The

source has 1000 turns of wire, with | =1mA.

&

—
E
-

A’

1
1
%

-
<«
[
|
g
j\

¥ il 1 D)
. - - —_ '\b
t B3 g /\/@'
10 m Q,’
O
&Y*
¥, %6
W o8
R LI
V. =N —
lry 'R,_;
‘R_,.g I
< N
60
i
0/
O

Yy
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Solution:

a —[10%j

_3.183x10° (H*) "™ = s 10004,S
~1.551x10° (H )

d 2+,
™ 4S  1000x,S

>

R -0 _ 2+l 4%

1S 10004,S &
~6.366x10° (H ) &
| ‘b'
R, =% =9 —7958x10°(H 3\%
HS 1S :
.\é,'ﬂ
@, = Vi ibig
le + (RmZ + Rg )/’(CR’m3

=1.053x107" (Wb
Flux division gives: %@'

Ry

DR 1
\+Rm2+Rg

?3©‘§.34><10‘1°(Wb)

2
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Ferromagnetic materials (Revisited)
Magnetic Hysteresis

0 100 300 500 700 900
H (A-t/m)

Figure 8.11 Magnetization curve of a sample of silicon sheet

steal.
O”
?.,
@0 Domains Before
g Magnetization
e’}

S

%‘b

e

Domains After
Magnetization
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Figure 8.12 A hysteresis loop for silicon steel. The
coercive force H. and remnant flux density B, are

indicated.
N\
NS
B Fix Densiy Nk
Retentivity ; // 8

(resdual flox density 8, )\/./ /

Coercivity / /
A \‘ b H
¢ . :

‘%(b, Magnetzing Force . Magnetizing Forco
/

5 In Opposio Diroction
Q / /’(

Saturaton .
in Opposte Directon -B S%Mmm
Figure 4.6: Hyteresis loop.

< Energy is lost.
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+ Easily magnetized and demagnetized. (Soft magnetic materials).
% (Hard to demagnetize once they are magnetized). Usefull for producing permenant
magnets.

% Soft magnetic materials: Iron (0.2% impure), 4 =9000, H = 80( m)’
B, =0.77(T), saturation flux By =2.15(T)

% Hard magnetic materials: Alinco (Aluminum-Nickel-Cobalt), U =3-5,

X
H. =60(KA%n), B, =1.25(T), Curie Temp. 850(C°) /\/‘U\

POTENTIAL ENERGY AND FORCES %@
ON MAGNETIC MATERIALS
The total energy stored in a steady magnetic field in which %@‘ﬁnearly related to

His
1 '*O
i=5 )] B
v %6

Letting B = uH, we have the equivalent fogm lations

=l i -2 JI%

Think of this energy as being d|§mbuted throughout the volume with an energy

density of %6

To calculate the f@%és on nonlinear magnetic materials, suppose a long solenoid
with a silicon- | core. A coil containing n turns/m with a current I surrounds it.
Let the ma ic flux density be B,;. Suppose that the core is composed of two

semi- mﬂn{t cylinders that are just touching.We now apply a mechanical force to
separ%e hese two sections of the core while keeping the flux density constant.
We apply a force F over a distance dL, thus doing work F dL. We use the

ciple of virtual work to determine the work we have done in moving one

core appearing as stored energy in the air gap we have created. This increase is
2

1B%
dWy = FdL = =—=SdL
2 o

Where S is the core cross-sectional area. Thus
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1B?
F=-—"g
2 o
In summary, the principle of virtual work states that
F = -VWy

INDUCTANCE AND MUTUAL INDUCTANCE
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Consider a coil of N turns in which a current | produces a total flux ®. We
assume that this flux links or encircles each of the N turns, and that each of the N
turns links the total flux .

The flux linkage A = N@® is defined as the product of the number of turns N and
the flux @ linking each of them.

Definition of inductance (or self-inductance): the ratio of the total flux Ilnkages
to the current which they link;

A NCD( Wb.t) ,4}’
T A oM

v
lllustration: To calculate the inductance per meter length of a cgaxial cable of
inner radius a and outer radius b. We may take the expressﬁn for total flux

developed previously, Q&
@ H[}fdl b (06”
= — ] —
2 a f\/
and obtain the inductance rapidly for a length d, Y'I,O
d b
L=E%%m2H
21 a
or, on a per-meter basis, Y
b
L=21m2 Wm
2r  a

In this case, N = 1 turn, and allz%e flux links all the current.
[llustration: For a tormdé@%’ll of N turns and a current I, we have

NI
Q\ B, = Ho
3 2mp
If the dimensio %f the cross section are small compared with the mean radius
of the tormd@then the total flux is

I
éY” b — oNIS
&S 2Py
Thsﬁjuctance
HQNES
- 27pyg

Assumed that all the flux links all the turns.
A definition for inductance using energy expression,

2Wy

L= 73
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The interior of any conductor also contains magnetic flux. Internal inductance,
which must be combined with the external inductance to obtain the total
inductance.

The internal inductance of a long, straight wire of circular cross section, radius a,
and uniform current distribution is

Lf{.inl — Si H/m

T
Try this one q,\e}
Mutual inductance: f\/

(5]

S
>
Q&% CDlZ - j] B1 - dSz
Sz

> ,ul dl' X @,
/\/ Bl 2
N R
O
&V’ ul; dl’' X dg
%e CI)12 = ff % 2 . dSz
%‘Z’ s, g,
$ Dy, = Myl
N Ay = NPy
Mutual inductance between circuits 1 and 2, M,,, in terms of mutual flux
linkages,
Ny D
M =
I

where M;, signifies the flux produced by I; which links the path of the filamentary
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current I,, and N, is the number of turns in circuit 2. It can be shown that

M2 = My

EXAMPLE 8.9

Calculate the self-inductances of and the mutual inductances between two coaxial
solenoids of radius Ry and R>, R2 = R). carrying currents [y and 5 with n| and
n7 turns/m, respectively.

Solution. We first attack the mutual inductances. From Eq. (13), Chapter 7, we let
ny = N/d. and obtain

H =nlia, 0=<p<R)

=0 (p=R)
and
H; =nha, (0<=p<Ry)
=0 (p= Ry
e}v
&
%‘b
&n
hY)
.\bm
/\/‘Z}‘
“00
?y
o
<
,g-
60
W7
0/
O
Yy
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Thus, for this uniform field
@2 = pon [ wRT
and
Mp = ,u[m]ngrrR]z
Similarly,
®y) = pgny LR}
My = poninamRT = My
If ny = 30 turns/em, 1> = 80 turns/cm, R) = 2 cm. and R = 3 cm, then
Mz = My = 4z x 107(5000)(8000)7(0.02%) = 63.2 mH/m
The self-inductances are easily found. The flux produced in coil 1 by 1) 1s
@y = pony IR
and thus
Ly =poniSid H
The inductance per unit length is therefore
L= lu[m%S] H/m
or
Ly =395 mH'm
Similarly,

Ly = pugn3S; =227 mH/m

O
4>
0/
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